Critical exponents of colloid particles in bulk and confinement
Using grand canonical Monte Carlo simulations, we investigate the percolation behavior of a square well fluid with an ultra-short range of attraction in three dimension (3D) and in confined geometry. The latter is defined through two parallel and structureless walls (slit-pore). We focus on temperat...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2012-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Neitsch, Helge Klapp, Sabine H L |
description | Using grand canonical Monte Carlo simulations, we investigate the percolation behavior of a square well fluid with an ultra-short range of attraction in three dimension (3D) and in confined geometry. The latter is defined through two parallel and structureless walls (slit-pore). We focus on temperatures above the critical temperature of the (metastable) condensation transition of the 3D system. Investigating a broad range of systems sizes, we first determine the percolation thresholds, i. e., the critical packing fraction for percolation \(\eta_{c}\). For the slit-pore systems, \(\eta_{c}\) is found to vary with the wall separation \(L_{z}\) in a continuous but non-monotonic way, \(\eta_{c}(L_{z}\rightarrow\infty)=\eta_{c}^{\text{3D}}\). We also report results for critical exponents of the percolation transition, specifically, the exponent \(\nu\) of the correlation length \(\xi\) and the two fisher exponents \(\tau\) and \(\sigma\) of the cluster-size distribution. These exponents are obtained from a finite-size analysis involving the cluster-size distribution and the radii of gyration distribution at the percolation threshold. Within the accuracy of our simulations, the values of the critical exponents of our 3D system are comparable to those of 3D random percolation theory. For narrow slit-pores, the estimated exponents are found to be close to those obtained from the random percolation theory in two dimensions. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086661810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086661810</sourcerecordid><originalsourceid>FETCH-proquest_journals_20866618103</originalsourceid><addsrcrecordid>eNqNyjEKwjAUgOEgCBbtHR44F9Kkjd0ciuIB3EtsE0iNLzWvAY9vBg_g9A_fv2GFkLKuukaIHSuJZs65UCfRtrJg5z661Y3ag_ksAQ2uBMHCGLwPboJFx6zeEDiER_JP0DhlRevQvPJ9YFurPZny1z07Xi_3_lYtMbyToXWYQ4qYaRC8U0rVXc3lf9cXHQQ47w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086661810</pqid></control><display><type>article</type><title>Critical exponents of colloid particles in bulk and confinement</title><source>Free E- Journals</source><creator>Neitsch, Helge ; Klapp, Sabine H L</creator><creatorcontrib>Neitsch, Helge ; Klapp, Sabine H L</creatorcontrib><description>Using grand canonical Monte Carlo simulations, we investigate the percolation behavior of a square well fluid with an ultra-short range of attraction in three dimension (3D) and in confined geometry. The latter is defined through two parallel and structureless walls (slit-pore). We focus on temperatures above the critical temperature of the (metastable) condensation transition of the 3D system. Investigating a broad range of systems sizes, we first determine the percolation thresholds, i. e., the critical packing fraction for percolation \(\eta_{c}\). For the slit-pore systems, \(\eta_{c}\) is found to vary with the wall separation \(L_{z}\) in a continuous but non-monotonic way, \(\eta_{c}(L_{z}\rightarrow\infty)=\eta_{c}^{\text{3D}}\). We also report results for critical exponents of the percolation transition, specifically, the exponent \(\nu\) of the correlation length \(\xi\) and the two fisher exponents \(\tau\) and \(\sigma\) of the cluster-size distribution. These exponents are obtained from a finite-size analysis involving the cluster-size distribution and the radii of gyration distribution at the percolation threshold. Within the accuracy of our simulations, the values of the critical exponents of our 3D system are comparable to those of 3D random percolation theory. For narrow slit-pores, the estimated exponents are found to be close to those obtained from the random percolation theory in two dimensions.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Clusters ; Computer simulation ; Critical temperature ; Exponents ; Particle size distribution ; Percolation theory ; Theorems</subject><ispartof>arXiv.org, 2012-11</ispartof><rights>2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Neitsch, Helge</creatorcontrib><creatorcontrib>Klapp, Sabine H L</creatorcontrib><title>Critical exponents of colloid particles in bulk and confinement</title><title>arXiv.org</title><description>Using grand canonical Monte Carlo simulations, we investigate the percolation behavior of a square well fluid with an ultra-short range of attraction in three dimension (3D) and in confined geometry. The latter is defined through two parallel and structureless walls (slit-pore). We focus on temperatures above the critical temperature of the (metastable) condensation transition of the 3D system. Investigating a broad range of systems sizes, we first determine the percolation thresholds, i. e., the critical packing fraction for percolation \(\eta_{c}\). For the slit-pore systems, \(\eta_{c}\) is found to vary with the wall separation \(L_{z}\) in a continuous but non-monotonic way, \(\eta_{c}(L_{z}\rightarrow\infty)=\eta_{c}^{\text{3D}}\). We also report results for critical exponents of the percolation transition, specifically, the exponent \(\nu\) of the correlation length \(\xi\) and the two fisher exponents \(\tau\) and \(\sigma\) of the cluster-size distribution. These exponents are obtained from a finite-size analysis involving the cluster-size distribution and the radii of gyration distribution at the percolation threshold. Within the accuracy of our simulations, the values of the critical exponents of our 3D system are comparable to those of 3D random percolation theory. For narrow slit-pores, the estimated exponents are found to be close to those obtained from the random percolation theory in two dimensions.</description><subject>Clusters</subject><subject>Computer simulation</subject><subject>Critical temperature</subject><subject>Exponents</subject><subject>Particle size distribution</subject><subject>Percolation theory</subject><subject>Theorems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyjEKwjAUgOEgCBbtHR44F9Kkjd0ciuIB3EtsE0iNLzWvAY9vBg_g9A_fv2GFkLKuukaIHSuJZs65UCfRtrJg5z661Y3ag_ksAQ2uBMHCGLwPboJFx6zeEDiER_JP0DhlRevQvPJ9YFurPZny1z07Xi_3_lYtMbyToXWYQ4qYaRC8U0rVXc3lf9cXHQQ47w</recordid><startdate>20121105</startdate><enddate>20121105</enddate><creator>Neitsch, Helge</creator><creator>Klapp, Sabine H L</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20121105</creationdate><title>Critical exponents of colloid particles in bulk and confinement</title><author>Neitsch, Helge ; Klapp, Sabine H L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20866618103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Clusters</topic><topic>Computer simulation</topic><topic>Critical temperature</topic><topic>Exponents</topic><topic>Particle size distribution</topic><topic>Percolation theory</topic><topic>Theorems</topic><toplevel>online_resources</toplevel><creatorcontrib>Neitsch, Helge</creatorcontrib><creatorcontrib>Klapp, Sabine H L</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neitsch, Helge</au><au>Klapp, Sabine H L</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Critical exponents of colloid particles in bulk and confinement</atitle><jtitle>arXiv.org</jtitle><date>2012-11-05</date><risdate>2012</risdate><eissn>2331-8422</eissn><abstract>Using grand canonical Monte Carlo simulations, we investigate the percolation behavior of a square well fluid with an ultra-short range of attraction in three dimension (3D) and in confined geometry. The latter is defined through two parallel and structureless walls (slit-pore). We focus on temperatures above the critical temperature of the (metastable) condensation transition of the 3D system. Investigating a broad range of systems sizes, we first determine the percolation thresholds, i. e., the critical packing fraction for percolation \(\eta_{c}\). For the slit-pore systems, \(\eta_{c}\) is found to vary with the wall separation \(L_{z}\) in a continuous but non-monotonic way, \(\eta_{c}(L_{z}\rightarrow\infty)=\eta_{c}^{\text{3D}}\). We also report results for critical exponents of the percolation transition, specifically, the exponent \(\nu\) of the correlation length \(\xi\) and the two fisher exponents \(\tau\) and \(\sigma\) of the cluster-size distribution. These exponents are obtained from a finite-size analysis involving the cluster-size distribution and the radii of gyration distribution at the percolation threshold. Within the accuracy of our simulations, the values of the critical exponents of our 3D system are comparable to those of 3D random percolation theory. For narrow slit-pores, the estimated exponents are found to be close to those obtained from the random percolation theory in two dimensions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2012-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2086661810 |
source | Free E- Journals |
subjects | Clusters Computer simulation Critical temperature Exponents Particle size distribution Percolation theory Theorems |
title | Critical exponents of colloid particles in bulk and confinement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A23%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Critical%20exponents%20of%20colloid%20particles%20in%20bulk%20and%20confinement&rft.jtitle=arXiv.org&rft.au=Neitsch,%20Helge&rft.date=2012-11-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086661810%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2086661810&rft_id=info:pmid/&rfr_iscdi=true |