Applying Discrete PCA in Data Analysis
Methods for analysis of principal components in discrete data have existed for some time under various names such as grade of membership modelling, probabilistic latent semantic analysis, and genotype inference with admixture. In this paper we explore a number of extensions to the common theory, and...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2012-07 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Buntine, Wray L Jakulin, Aleks |
description | Methods for analysis of principal components in discrete data have existed for some time under various names such as grade of membership modelling, probabilistic latent semantic analysis, and genotype inference with admixture. In this paper we explore a number of extensions to the common theory, and present some application of these methods to some common statistical tasks. We show that these methods can be interpreted as a discrete version of ICA. We develop a hierarchical version yielding components at different levels of detail, and additional techniques for Gibbs sampling. We compare the algorithms on a text prediction task using support vector machines, and to information retrieval. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086614774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086614774</sourcerecordid><originalsourceid>FETCH-proquest_journals_20866147743</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQcywoyKnMzEtXcMksTi5KLUlVCHB2VMjMU3BJLElUcMxLzKkszizmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUVAxcXxRgYWZmaGJubmJsbEqQIA2hcuhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086614774</pqid></control><display><type>article</type><title>Applying Discrete PCA in Data Analysis</title><source>Free E- Journals</source><creator>Buntine, Wray L ; Jakulin, Aleks</creator><creatorcontrib>Buntine, Wray L ; Jakulin, Aleks</creatorcontrib><description>Methods for analysis of principal components in discrete data have existed for some time under various names such as grade of membership modelling, probabilistic latent semantic analysis, and genotype inference with admixture. In this paper we explore a number of extensions to the common theory, and present some application of these methods to some common statistical tasks. We show that these methods can be interpreted as a discrete version of ICA. We develop a hierarchical version yielding components at different levels of detail, and additional techniques for Gibbs sampling. We compare the algorithms on a text prediction task using support vector machines, and to information retrieval.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Admixtures ; Algorithms ; Data analysis ; Information retrieval ; Principal components analysis ; Probabilistic inference ; Statistical analysis ; Statistical methods ; Support vector machines</subject><ispartof>arXiv.org, 2012-07</ispartof><rights>2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Buntine, Wray L</creatorcontrib><creatorcontrib>Jakulin, Aleks</creatorcontrib><title>Applying Discrete PCA in Data Analysis</title><title>arXiv.org</title><description>Methods for analysis of principal components in discrete data have existed for some time under various names such as grade of membership modelling, probabilistic latent semantic analysis, and genotype inference with admixture. In this paper we explore a number of extensions to the common theory, and present some application of these methods to some common statistical tasks. We show that these methods can be interpreted as a discrete version of ICA. We develop a hierarchical version yielding components at different levels of detail, and additional techniques for Gibbs sampling. We compare the algorithms on a text prediction task using support vector machines, and to information retrieval.</description><subject>Admixtures</subject><subject>Algorithms</subject><subject>Data analysis</subject><subject>Information retrieval</subject><subject>Principal components analysis</subject><subject>Probabilistic inference</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Support vector machines</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQcywoyKnMzEtXcMksTi5KLUlVCHB2VMjMU3BJLElUcMxLzKkszizmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUVAxcXxRgYWZmaGJubmJsbEqQIA2hcuhQ</recordid><startdate>20120711</startdate><enddate>20120711</enddate><creator>Buntine, Wray L</creator><creator>Jakulin, Aleks</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20120711</creationdate><title>Applying Discrete PCA in Data Analysis</title><author>Buntine, Wray L ; Jakulin, Aleks</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20866147743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Admixtures</topic><topic>Algorithms</topic><topic>Data analysis</topic><topic>Information retrieval</topic><topic>Principal components analysis</topic><topic>Probabilistic inference</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Buntine, Wray L</creatorcontrib><creatorcontrib>Jakulin, Aleks</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buntine, Wray L</au><au>Jakulin, Aleks</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Applying Discrete PCA in Data Analysis</atitle><jtitle>arXiv.org</jtitle><date>2012-07-11</date><risdate>2012</risdate><eissn>2331-8422</eissn><abstract>Methods for analysis of principal components in discrete data have existed for some time under various names such as grade of membership modelling, probabilistic latent semantic analysis, and genotype inference with admixture. In this paper we explore a number of extensions to the common theory, and present some application of these methods to some common statistical tasks. We show that these methods can be interpreted as a discrete version of ICA. We develop a hierarchical version yielding components at different levels of detail, and additional techniques for Gibbs sampling. We compare the algorithms on a text prediction task using support vector machines, and to information retrieval.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2012-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2086614774 |
source | Free E- Journals |
subjects | Admixtures Algorithms Data analysis Information retrieval Principal components analysis Probabilistic inference Statistical analysis Statistical methods Support vector machines |
title | Applying Discrete PCA in Data Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A06%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Applying%20Discrete%20PCA%20in%20Data%20Analysis&rft.jtitle=arXiv.org&rft.au=Buntine,%20Wray%20L&rft.date=2012-07-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086614774%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2086614774&rft_id=info:pmid/&rfr_iscdi=true |