Applying Discrete PCA in Data Analysis

Methods for analysis of principal components in discrete data have existed for some time under various names such as grade of membership modelling, probabilistic latent semantic analysis, and genotype inference with admixture. In this paper we explore a number of extensions to the common theory, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2012-07
Hauptverfasser: Buntine, Wray L, Jakulin, Aleks
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Buntine, Wray L
Jakulin, Aleks
description Methods for analysis of principal components in discrete data have existed for some time under various names such as grade of membership modelling, probabilistic latent semantic analysis, and genotype inference with admixture. In this paper we explore a number of extensions to the common theory, and present some application of these methods to some common statistical tasks. We show that these methods can be interpreted as a discrete version of ICA. We develop a hierarchical version yielding components at different levels of detail, and additional techniques for Gibbs sampling. We compare the algorithms on a text prediction task using support vector machines, and to information retrieval.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086614774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086614774</sourcerecordid><originalsourceid>FETCH-proquest_journals_20866147743</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQcywoyKnMzEtXcMksTi5KLUlVCHB2VMjMU3BJLElUcMxLzKkszizmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUVAxcXxRgYWZmaGJubmJsbEqQIA2hcuhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086614774</pqid></control><display><type>article</type><title>Applying Discrete PCA in Data Analysis</title><source>Free E- Journals</source><creator>Buntine, Wray L ; Jakulin, Aleks</creator><creatorcontrib>Buntine, Wray L ; Jakulin, Aleks</creatorcontrib><description>Methods for analysis of principal components in discrete data have existed for some time under various names such as grade of membership modelling, probabilistic latent semantic analysis, and genotype inference with admixture. In this paper we explore a number of extensions to the common theory, and present some application of these methods to some common statistical tasks. We show that these methods can be interpreted as a discrete version of ICA. We develop a hierarchical version yielding components at different levels of detail, and additional techniques for Gibbs sampling. We compare the algorithms on a text prediction task using support vector machines, and to information retrieval.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Admixtures ; Algorithms ; Data analysis ; Information retrieval ; Principal components analysis ; Probabilistic inference ; Statistical analysis ; Statistical methods ; Support vector machines</subject><ispartof>arXiv.org, 2012-07</ispartof><rights>2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Buntine, Wray L</creatorcontrib><creatorcontrib>Jakulin, Aleks</creatorcontrib><title>Applying Discrete PCA in Data Analysis</title><title>arXiv.org</title><description>Methods for analysis of principal components in discrete data have existed for some time under various names such as grade of membership modelling, probabilistic latent semantic analysis, and genotype inference with admixture. In this paper we explore a number of extensions to the common theory, and present some application of these methods to some common statistical tasks. We show that these methods can be interpreted as a discrete version of ICA. We develop a hierarchical version yielding components at different levels of detail, and additional techniques for Gibbs sampling. We compare the algorithms on a text prediction task using support vector machines, and to information retrieval.</description><subject>Admixtures</subject><subject>Algorithms</subject><subject>Data analysis</subject><subject>Information retrieval</subject><subject>Principal components analysis</subject><subject>Probabilistic inference</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Support vector machines</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQcywoyKnMzEtXcMksTi5KLUlVCHB2VMjMU3BJLElUcMxLzKkszizmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUVAxcXxRgYWZmaGJubmJsbEqQIA2hcuhQ</recordid><startdate>20120711</startdate><enddate>20120711</enddate><creator>Buntine, Wray L</creator><creator>Jakulin, Aleks</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20120711</creationdate><title>Applying Discrete PCA in Data Analysis</title><author>Buntine, Wray L ; Jakulin, Aleks</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20866147743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Admixtures</topic><topic>Algorithms</topic><topic>Data analysis</topic><topic>Information retrieval</topic><topic>Principal components analysis</topic><topic>Probabilistic inference</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Buntine, Wray L</creatorcontrib><creatorcontrib>Jakulin, Aleks</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buntine, Wray L</au><au>Jakulin, Aleks</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Applying Discrete PCA in Data Analysis</atitle><jtitle>arXiv.org</jtitle><date>2012-07-11</date><risdate>2012</risdate><eissn>2331-8422</eissn><abstract>Methods for analysis of principal components in discrete data have existed for some time under various names such as grade of membership modelling, probabilistic latent semantic analysis, and genotype inference with admixture. In this paper we explore a number of extensions to the common theory, and present some application of these methods to some common statistical tasks. We show that these methods can be interpreted as a discrete version of ICA. We develop a hierarchical version yielding components at different levels of detail, and additional techniques for Gibbs sampling. We compare the algorithms on a text prediction task using support vector machines, and to information retrieval.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2012-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2086614774
source Free E- Journals
subjects Admixtures
Algorithms
Data analysis
Information retrieval
Principal components analysis
Probabilistic inference
Statistical analysis
Statistical methods
Support vector machines
title Applying Discrete PCA in Data Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A06%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Applying%20Discrete%20PCA%20in%20Data%20Analysis&rft.jtitle=arXiv.org&rft.au=Buntine,%20Wray%20L&rft.date=2012-07-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086614774%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2086614774&rft_id=info:pmid/&rfr_iscdi=true