Electrostriction Effects During Defibrillation

Background-The electric field applied to the heart during defibrillation causes mechanical forces (electrostriction), and as a result the heart deforms. This paper analyses the physical origin of the deformation, and how significant it is. Methods-We represent the heart as an anisotropic cylinder. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2011-02
Hauptverfasser: Fritz, Michelle M, Prior, Phil W, Roth, Bradley J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Fritz, Michelle M
Prior, Phil W
Roth, Bradley J
description Background-The electric field applied to the heart during defibrillation causes mechanical forces (electrostriction), and as a result the heart deforms. This paper analyses the physical origin of the deformation, and how significant it is. Methods-We represent the heart as an anisotropic cylinder. This simple geometry allows us to obtain analytical solutions for the potential, current density, charge, stress, and strain. Results-Charge induced on the heart surface in the presence of the electric field results in forces that deform the heart. In addition, the anisotropy of cardiac tissue creates a charge density throughout the tissue volume, leading to body forces. These two forces cause the tissue to deform in a complicated manner, with the anisotropy suppressing radial displacements in favor of tangential ones. Quantitatively, the deformation of the tissue is small, although it may be significant when using some imaging techniques that require the measurement of small displacements. Conclusions-The anisotropy of cardiac tissue produces qualitatively new mechanical behavior during a strong, defibrillation-strength electric shock.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086582312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086582312</sourcerecordid><originalsourceid>FETCH-proquest_journals_20865823123</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQc81JTS4pyi8uKcpMLsnMz1NwTUsDihQruJQWZealK7ikpmUmFWXm5CSCZHkYWNMSc4pTeaE0N4Oym2uIs4duQVF-YWlqcUl8Vn5pUR5QKt7IwMLM1MLI2NDImDhVADZFMts</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086582312</pqid></control><display><type>article</type><title>Electrostriction Effects During Defibrillation</title><source>Free E- Journals</source><creator>Fritz, Michelle M ; Prior, Phil W ; Roth, Bradley J</creator><creatorcontrib>Fritz, Michelle M ; Prior, Phil W ; Roth, Bradley J</creatorcontrib><description>Background-The electric field applied to the heart during defibrillation causes mechanical forces (electrostriction), and as a result the heart deforms. This paper analyses the physical origin of the deformation, and how significant it is. Methods-We represent the heart as an anisotropic cylinder. This simple geometry allows us to obtain analytical solutions for the potential, current density, charge, stress, and strain. Results-Charge induced on the heart surface in the presence of the electric field results in forces that deform the heart. In addition, the anisotropy of cardiac tissue creates a charge density throughout the tissue volume, leading to body forces. These two forces cause the tissue to deform in a complicated manner, with the anisotropy suppressing radial displacements in favor of tangential ones. Quantitatively, the deformation of the tissue is small, although it may be significant when using some imaging techniques that require the measurement of small displacements. Conclusions-The anisotropy of cardiac tissue produces qualitatively new mechanical behavior during a strong, defibrillation-strength electric shock.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Anisotropy ; Charge density ; Cylinders ; Deformation mechanisms ; Electric fields ; Electrostriction ; Exact solutions ; Heart ; Imaging techniques ; Mechanical properties</subject><ispartof>arXiv.org, 2011-02</ispartof><rights>2011. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Fritz, Michelle M</creatorcontrib><creatorcontrib>Prior, Phil W</creatorcontrib><creatorcontrib>Roth, Bradley J</creatorcontrib><title>Electrostriction Effects During Defibrillation</title><title>arXiv.org</title><description>Background-The electric field applied to the heart during defibrillation causes mechanical forces (electrostriction), and as a result the heart deforms. This paper analyses the physical origin of the deformation, and how significant it is. Methods-We represent the heart as an anisotropic cylinder. This simple geometry allows us to obtain analytical solutions for the potential, current density, charge, stress, and strain. Results-Charge induced on the heart surface in the presence of the electric field results in forces that deform the heart. In addition, the anisotropy of cardiac tissue creates a charge density throughout the tissue volume, leading to body forces. These two forces cause the tissue to deform in a complicated manner, with the anisotropy suppressing radial displacements in favor of tangential ones. Quantitatively, the deformation of the tissue is small, although it may be significant when using some imaging techniques that require the measurement of small displacements. Conclusions-The anisotropy of cardiac tissue produces qualitatively new mechanical behavior during a strong, defibrillation-strength electric shock.</description><subject>Anisotropy</subject><subject>Charge density</subject><subject>Cylinders</subject><subject>Deformation mechanisms</subject><subject>Electric fields</subject><subject>Electrostriction</subject><subject>Exact solutions</subject><subject>Heart</subject><subject>Imaging techniques</subject><subject>Mechanical properties</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQc81JTS4pyi8uKcpMLsnMz1NwTUsDihQruJQWZealK7ikpmUmFWXm5CSCZHkYWNMSc4pTeaE0N4Oym2uIs4duQVF-YWlqcUl8Vn5pUR5QKt7IwMLM1MLI2NDImDhVADZFMts</recordid><startdate>20110220</startdate><enddate>20110220</enddate><creator>Fritz, Michelle M</creator><creator>Prior, Phil W</creator><creator>Roth, Bradley J</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20110220</creationdate><title>Electrostriction Effects During Defibrillation</title><author>Fritz, Michelle M ; Prior, Phil W ; Roth, Bradley J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20865823123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Anisotropy</topic><topic>Charge density</topic><topic>Cylinders</topic><topic>Deformation mechanisms</topic><topic>Electric fields</topic><topic>Electrostriction</topic><topic>Exact solutions</topic><topic>Heart</topic><topic>Imaging techniques</topic><topic>Mechanical properties</topic><toplevel>online_resources</toplevel><creatorcontrib>Fritz, Michelle M</creatorcontrib><creatorcontrib>Prior, Phil W</creatorcontrib><creatorcontrib>Roth, Bradley J</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fritz, Michelle M</au><au>Prior, Phil W</au><au>Roth, Bradley J</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Electrostriction Effects During Defibrillation</atitle><jtitle>arXiv.org</jtitle><date>2011-02-20</date><risdate>2011</risdate><eissn>2331-8422</eissn><abstract>Background-The electric field applied to the heart during defibrillation causes mechanical forces (electrostriction), and as a result the heart deforms. This paper analyses the physical origin of the deformation, and how significant it is. Methods-We represent the heart as an anisotropic cylinder. This simple geometry allows us to obtain analytical solutions for the potential, current density, charge, stress, and strain. Results-Charge induced on the heart surface in the presence of the electric field results in forces that deform the heart. In addition, the anisotropy of cardiac tissue creates a charge density throughout the tissue volume, leading to body forces. These two forces cause the tissue to deform in a complicated manner, with the anisotropy suppressing radial displacements in favor of tangential ones. Quantitatively, the deformation of the tissue is small, although it may be significant when using some imaging techniques that require the measurement of small displacements. Conclusions-The anisotropy of cardiac tissue produces qualitatively new mechanical behavior during a strong, defibrillation-strength electric shock.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2011-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2086582312
source Free E- Journals
subjects Anisotropy
Charge density
Cylinders
Deformation mechanisms
Electric fields
Electrostriction
Exact solutions
Heart
Imaging techniques
Mechanical properties
title Electrostriction Effects During Defibrillation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T00%3A11%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Electrostriction%20Effects%20During%20Defibrillation&rft.jtitle=arXiv.org&rft.au=Fritz,%20Michelle%20M&rft.date=2011-02-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086582312%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2086582312&rft_id=info:pmid/&rfr_iscdi=true