Electrostriction Effects During Defibrillation
Background-The electric field applied to the heart during defibrillation causes mechanical forces (electrostriction), and as a result the heart deforms. This paper analyses the physical origin of the deformation, and how significant it is. Methods-We represent the heart as an anisotropic cylinder. T...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2011-02 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Fritz, Michelle M Prior, Phil W Roth, Bradley J |
description | Background-The electric field applied to the heart during defibrillation causes mechanical forces (electrostriction), and as a result the heart deforms. This paper analyses the physical origin of the deformation, and how significant it is. Methods-We represent the heart as an anisotropic cylinder. This simple geometry allows us to obtain analytical solutions for the potential, current density, charge, stress, and strain. Results-Charge induced on the heart surface in the presence of the electric field results in forces that deform the heart. In addition, the anisotropy of cardiac tissue creates a charge density throughout the tissue volume, leading to body forces. These two forces cause the tissue to deform in a complicated manner, with the anisotropy suppressing radial displacements in favor of tangential ones. Quantitatively, the deformation of the tissue is small, although it may be significant when using some imaging techniques that require the measurement of small displacements. Conclusions-The anisotropy of cardiac tissue produces qualitatively new mechanical behavior during a strong, defibrillation-strength electric shock. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086582312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086582312</sourcerecordid><originalsourceid>FETCH-proquest_journals_20865823123</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQc81JTS4pyi8uKcpMLsnMz1NwTUsDihQruJQWZealK7ikpmUmFWXm5CSCZHkYWNMSc4pTeaE0N4Oym2uIs4duQVF-YWlqcUl8Vn5pUR5QKt7IwMLM1MLI2NDImDhVADZFMts</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086582312</pqid></control><display><type>article</type><title>Electrostriction Effects During Defibrillation</title><source>Free E- Journals</source><creator>Fritz, Michelle M ; Prior, Phil W ; Roth, Bradley J</creator><creatorcontrib>Fritz, Michelle M ; Prior, Phil W ; Roth, Bradley J</creatorcontrib><description>Background-The electric field applied to the heart during defibrillation causes mechanical forces (electrostriction), and as a result the heart deforms. This paper analyses the physical origin of the deformation, and how significant it is. Methods-We represent the heart as an anisotropic cylinder. This simple geometry allows us to obtain analytical solutions for the potential, current density, charge, stress, and strain. Results-Charge induced on the heart surface in the presence of the electric field results in forces that deform the heart. In addition, the anisotropy of cardiac tissue creates a charge density throughout the tissue volume, leading to body forces. These two forces cause the tissue to deform in a complicated manner, with the anisotropy suppressing radial displacements in favor of tangential ones. Quantitatively, the deformation of the tissue is small, although it may be significant when using some imaging techniques that require the measurement of small displacements. Conclusions-The anisotropy of cardiac tissue produces qualitatively new mechanical behavior during a strong, defibrillation-strength electric shock.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Anisotropy ; Charge density ; Cylinders ; Deformation mechanisms ; Electric fields ; Electrostriction ; Exact solutions ; Heart ; Imaging techniques ; Mechanical properties</subject><ispartof>arXiv.org, 2011-02</ispartof><rights>2011. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Fritz, Michelle M</creatorcontrib><creatorcontrib>Prior, Phil W</creatorcontrib><creatorcontrib>Roth, Bradley J</creatorcontrib><title>Electrostriction Effects During Defibrillation</title><title>arXiv.org</title><description>Background-The electric field applied to the heart during defibrillation causes mechanical forces (electrostriction), and as a result the heart deforms. This paper analyses the physical origin of the deformation, and how significant it is. Methods-We represent the heart as an anisotropic cylinder. This simple geometry allows us to obtain analytical solutions for the potential, current density, charge, stress, and strain. Results-Charge induced on the heart surface in the presence of the electric field results in forces that deform the heart. In addition, the anisotropy of cardiac tissue creates a charge density throughout the tissue volume, leading to body forces. These two forces cause the tissue to deform in a complicated manner, with the anisotropy suppressing radial displacements in favor of tangential ones. Quantitatively, the deformation of the tissue is small, although it may be significant when using some imaging techniques that require the measurement of small displacements. Conclusions-The anisotropy of cardiac tissue produces qualitatively new mechanical behavior during a strong, defibrillation-strength electric shock.</description><subject>Anisotropy</subject><subject>Charge density</subject><subject>Cylinders</subject><subject>Deformation mechanisms</subject><subject>Electric fields</subject><subject>Electrostriction</subject><subject>Exact solutions</subject><subject>Heart</subject><subject>Imaging techniques</subject><subject>Mechanical properties</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQc81JTS4pyi8uKcpMLsnMz1NwTUsDihQruJQWZealK7ikpmUmFWXm5CSCZHkYWNMSc4pTeaE0N4Oym2uIs4duQVF-YWlqcUl8Vn5pUR5QKt7IwMLM1MLI2NDImDhVADZFMts</recordid><startdate>20110220</startdate><enddate>20110220</enddate><creator>Fritz, Michelle M</creator><creator>Prior, Phil W</creator><creator>Roth, Bradley J</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20110220</creationdate><title>Electrostriction Effects During Defibrillation</title><author>Fritz, Michelle M ; Prior, Phil W ; Roth, Bradley J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20865823123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Anisotropy</topic><topic>Charge density</topic><topic>Cylinders</topic><topic>Deformation mechanisms</topic><topic>Electric fields</topic><topic>Electrostriction</topic><topic>Exact solutions</topic><topic>Heart</topic><topic>Imaging techniques</topic><topic>Mechanical properties</topic><toplevel>online_resources</toplevel><creatorcontrib>Fritz, Michelle M</creatorcontrib><creatorcontrib>Prior, Phil W</creatorcontrib><creatorcontrib>Roth, Bradley J</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fritz, Michelle M</au><au>Prior, Phil W</au><au>Roth, Bradley J</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Electrostriction Effects During Defibrillation</atitle><jtitle>arXiv.org</jtitle><date>2011-02-20</date><risdate>2011</risdate><eissn>2331-8422</eissn><abstract>Background-The electric field applied to the heart during defibrillation causes mechanical forces (electrostriction), and as a result the heart deforms. This paper analyses the physical origin of the deformation, and how significant it is. Methods-We represent the heart as an anisotropic cylinder. This simple geometry allows us to obtain analytical solutions for the potential, current density, charge, stress, and strain. Results-Charge induced on the heart surface in the presence of the electric field results in forces that deform the heart. In addition, the anisotropy of cardiac tissue creates a charge density throughout the tissue volume, leading to body forces. These two forces cause the tissue to deform in a complicated manner, with the anisotropy suppressing radial displacements in favor of tangential ones. Quantitatively, the deformation of the tissue is small, although it may be significant when using some imaging techniques that require the measurement of small displacements. Conclusions-The anisotropy of cardiac tissue produces qualitatively new mechanical behavior during a strong, defibrillation-strength electric shock.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2011-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2086582312 |
source | Free E- Journals |
subjects | Anisotropy Charge density Cylinders Deformation mechanisms Electric fields Electrostriction Exact solutions Heart Imaging techniques Mechanical properties |
title | Electrostriction Effects During Defibrillation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T00%3A11%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Electrostriction%20Effects%20During%20Defibrillation&rft.jtitle=arXiv.org&rft.au=Fritz,%20Michelle%20M&rft.date=2011-02-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086582312%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2086582312&rft_id=info:pmid/&rfr_iscdi=true |