Harmonic Representation of Combinations and Partitions

In the present article a new method of deriving integral representations of combinations and partitions in terms of harmonic products has been established. This method may be relevant to statistical mechanics and to number theory.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2011-03
1. Verfasser: Psimopoulos, Michalis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Psimopoulos, Michalis
description In the present article a new method of deriving integral representations of combinations and partitions in terms of harmonic products has been established. This method may be relevant to statistical mechanics and to number theory.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086580849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086580849</sourcerecordid><originalsourceid>FETCH-proquest_journals_20865808493</originalsourceid><addsrcrecordid>eNqNikEKwjAQAIMgWLR_CHguxE1T47koPYp4L7GmkGJ3azb9v1J8gKdhmFmJDLQ-FLYE2IiceVBKQXUEY3QmqsbFkTB08uan6NljcikQSuplTeMj4KIsHT7l1cUUFt2Jde9e7PMft2J_Od_rppgivWfPqR1ojvhNLShbGatsedL_XR8EUDXe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086580849</pqid></control><display><type>article</type><title>Harmonic Representation of Combinations and Partitions</title><source>Free E- Journals</source><creator>Psimopoulos, Michalis</creator><creatorcontrib>Psimopoulos, Michalis</creatorcontrib><description>In the present article a new method of deriving integral representations of combinations and partitions in terms of harmonic products has been established. This method may be relevant to statistical mechanics and to number theory.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Number theory ; Representations ; Statistical mechanics</subject><ispartof>arXiv.org, 2011-03</ispartof><rights>2011. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Psimopoulos, Michalis</creatorcontrib><title>Harmonic Representation of Combinations and Partitions</title><title>arXiv.org</title><description>In the present article a new method of deriving integral representations of combinations and partitions in terms of harmonic products has been established. This method may be relevant to statistical mechanics and to number theory.</description><subject>Number theory</subject><subject>Representations</subject><subject>Statistical mechanics</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNikEKwjAQAIMgWLR_CHguxE1T47koPYp4L7GmkGJ3azb9v1J8gKdhmFmJDLQ-FLYE2IiceVBKQXUEY3QmqsbFkTB08uan6NljcikQSuplTeMj4KIsHT7l1cUUFt2Jde9e7PMft2J_Od_rppgivWfPqR1ojvhNLShbGatsedL_XR8EUDXe</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Psimopoulos, Michalis</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20110301</creationdate><title>Harmonic Representation of Combinations and Partitions</title><author>Psimopoulos, Michalis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20865808493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Number theory</topic><topic>Representations</topic><topic>Statistical mechanics</topic><toplevel>online_resources</toplevel><creatorcontrib>Psimopoulos, Michalis</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Psimopoulos, Michalis</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Harmonic Representation of Combinations and Partitions</atitle><jtitle>arXiv.org</jtitle><date>2011-03-01</date><risdate>2011</risdate><eissn>2331-8422</eissn><abstract>In the present article a new method of deriving integral representations of combinations and partitions in terms of harmonic products has been established. This method may be relevant to statistical mechanics and to number theory.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2011-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2086580849
source Free E- Journals
subjects Number theory
Representations
Statistical mechanics
title Harmonic Representation of Combinations and Partitions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A06%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Harmonic%20Representation%20of%20Combinations%20and%20Partitions&rft.jtitle=arXiv.org&rft.au=Psimopoulos,%20Michalis&rft.date=2011-03-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086580849%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2086580849&rft_id=info:pmid/&rfr_iscdi=true