Miniature Supersonic Burner for the Study of Combustion at Extreme Conditions. II: External Flow

AbstractA miniature supersonic burner has been designed with the purpose of studying extreme flow-chemistry interaction. The system combines a first-stage, lean premixed methane/air burner that creates a vitiated flow at pressure and a second-stage burner where additional fuel (methane) is added to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of energy engineering 2018-10, Vol.144 (5)
1. Verfasser: Karpetis, Adonios N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Journal of energy engineering
container_volume 144
creator Karpetis, Adonios N
description AbstractA miniature supersonic burner has been designed with the purpose of studying extreme flow-chemistry interaction. The system combines a first-stage, lean premixed methane/air burner that creates a vitiated flow at pressure and a second-stage burner where additional fuel (methane) is added to the flow before exiting the system through a converging nozzle. In this part, a one-dimensional (1D) detailed chemistry calculation of the reacting flow at the exit of the jet is conducted. The mixture of gases is allowed to expand isentropically to the conditions expected at the exit of the supersonic jet. The viscous and conducting flow field through a shock wave is calculated using the GRI3.0 kinetic scheme. The structure of the standing detonation downstream of the Mach stem is examined for different initial concentrations of hydrogen atoms. Results point to the extreme suppression of chemistry through the supersonic flow field and the creation of low Damköhler numbers in the exit of the miniature burner.
doi_str_mv 10.1061/(ASCE)EY.1943-7897.0000574
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2086476362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086476362</sourcerecordid><originalsourceid>FETCH-LOGICAL-a337t-974f531ceaab1816087e4a9034fb29392af9f032682960ff49ed1cddb24779df3</originalsourceid><addsrcrecordid>eNp1kD9PwzAQxS0EEqXwHSxYYEjwv9pxtxKlUAnEUBg6GTexRao2LrYj6LcnUQtM3HLSu_dOdz8ALjFKMeL49noyz4ubYpFiyWgiMilS1NVIsCMw-NWOwQAJShPJEDkFZyGsOk_GMzEAb091U-vYegPn7db44Jq6hHetb4yH1nkY37tJbKsddBbmbrNsQ6xdA3WExVf0ZmM6tanqXgwpnM3GvW58o9dwunaf5-DE6nUwF4c-BK_T4iV_SB6f72f55DHRlIqYSMHsiOLSaL3EGeYoE4ZpiSizSyKpJNpKiyjhGZEcWcukqXBZVUvChJCVpUNwtd-79e6jNSGqlWv7K4Ii3a9McMpJ5xrvXaV3IXhj1dbXG-13CiPVE1WqJ6qKherpqZ6eOhDtwnwf1qE0f-t_kv8HvwEw93ps</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086476362</pqid></control><display><type>article</type><title>Miniature Supersonic Burner for the Study of Combustion at Extreme Conditions. II: External Flow</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Karpetis, Adonios N</creator><creatorcontrib>Karpetis, Adonios N</creatorcontrib><description>AbstractA miniature supersonic burner has been designed with the purpose of studying extreme flow-chemistry interaction. The system combines a first-stage, lean premixed methane/air burner that creates a vitiated flow at pressure and a second-stage burner where additional fuel (methane) is added to the flow before exiting the system through a converging nozzle. In this part, a one-dimensional (1D) detailed chemistry calculation of the reacting flow at the exit of the jet is conducted. The mixture of gases is allowed to expand isentropically to the conditions expected at the exit of the supersonic jet. The viscous and conducting flow field through a shock wave is calculated using the GRI3.0 kinetic scheme. The structure of the standing detonation downstream of the Mach stem is examined for different initial concentrations of hydrogen atoms. Results point to the extreme suppression of chemistry through the supersonic flow field and the creation of low Damköhler numbers in the exit of the miniature burner.</description><identifier>ISSN: 0733-9402</identifier><identifier>EISSN: 1943-7897</identifier><identifier>DOI: 10.1061/(ASCE)EY.1943-7897.0000574</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Chemistry ; Detonation ; Gases ; Hydrogen atoms ; Mathematical analysis ; Methane ; Nozzles ; Organic chemistry ; Reacting flow ; Shock waves ; Supersonic flow ; Technical Papers</subject><ispartof>Journal of energy engineering, 2018-10, Vol.144 (5)</ispartof><rights>2018 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a337t-974f531ceaab1816087e4a9034fb29392af9f032682960ff49ed1cddb24779df3</citedby><cites>FETCH-LOGICAL-a337t-974f531ceaab1816087e4a9034fb29392af9f032682960ff49ed1cddb24779df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)EY.1943-7897.0000574$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)EY.1943-7897.0000574$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,76064,76072</link.rule.ids></links><search><creatorcontrib>Karpetis, Adonios N</creatorcontrib><title>Miniature Supersonic Burner for the Study of Combustion at Extreme Conditions. II: External Flow</title><title>Journal of energy engineering</title><description>AbstractA miniature supersonic burner has been designed with the purpose of studying extreme flow-chemistry interaction. The system combines a first-stage, lean premixed methane/air burner that creates a vitiated flow at pressure and a second-stage burner where additional fuel (methane) is added to the flow before exiting the system through a converging nozzle. In this part, a one-dimensional (1D) detailed chemistry calculation of the reacting flow at the exit of the jet is conducted. The mixture of gases is allowed to expand isentropically to the conditions expected at the exit of the supersonic jet. The viscous and conducting flow field through a shock wave is calculated using the GRI3.0 kinetic scheme. The structure of the standing detonation downstream of the Mach stem is examined for different initial concentrations of hydrogen atoms. Results point to the extreme suppression of chemistry through the supersonic flow field and the creation of low Damköhler numbers in the exit of the miniature burner.</description><subject>Chemistry</subject><subject>Detonation</subject><subject>Gases</subject><subject>Hydrogen atoms</subject><subject>Mathematical analysis</subject><subject>Methane</subject><subject>Nozzles</subject><subject>Organic chemistry</subject><subject>Reacting flow</subject><subject>Shock waves</subject><subject>Supersonic flow</subject><subject>Technical Papers</subject><issn>0733-9402</issn><issn>1943-7897</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kD9PwzAQxS0EEqXwHSxYYEjwv9pxtxKlUAnEUBg6GTexRao2LrYj6LcnUQtM3HLSu_dOdz8ALjFKMeL49noyz4ubYpFiyWgiMilS1NVIsCMw-NWOwQAJShPJEDkFZyGsOk_GMzEAb091U-vYegPn7db44Jq6hHetb4yH1nkY37tJbKsddBbmbrNsQ6xdA3WExVf0ZmM6tanqXgwpnM3GvW58o9dwunaf5-DE6nUwF4c-BK_T4iV_SB6f72f55DHRlIqYSMHsiOLSaL3EGeYoE4ZpiSizSyKpJNpKiyjhGZEcWcukqXBZVUvChJCVpUNwtd-79e6jNSGqlWv7K4Ii3a9McMpJ5xrvXaV3IXhj1dbXG-13CiPVE1WqJ6qKherpqZ6eOhDtwnwf1qE0f-t_kv8HvwEw93ps</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Karpetis, Adonios N</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20181001</creationdate><title>Miniature Supersonic Burner for the Study of Combustion at Extreme Conditions. II: External Flow</title><author>Karpetis, Adonios N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a337t-974f531ceaab1816087e4a9034fb29392af9f032682960ff49ed1cddb24779df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chemistry</topic><topic>Detonation</topic><topic>Gases</topic><topic>Hydrogen atoms</topic><topic>Mathematical analysis</topic><topic>Methane</topic><topic>Nozzles</topic><topic>Organic chemistry</topic><topic>Reacting flow</topic><topic>Shock waves</topic><topic>Supersonic flow</topic><topic>Technical Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karpetis, Adonios N</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of energy engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karpetis, Adonios N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Miniature Supersonic Burner for the Study of Combustion at Extreme Conditions. II: External Flow</atitle><jtitle>Journal of energy engineering</jtitle><date>2018-10-01</date><risdate>2018</risdate><volume>144</volume><issue>5</issue><issn>0733-9402</issn><eissn>1943-7897</eissn><abstract>AbstractA miniature supersonic burner has been designed with the purpose of studying extreme flow-chemistry interaction. The system combines a first-stage, lean premixed methane/air burner that creates a vitiated flow at pressure and a second-stage burner where additional fuel (methane) is added to the flow before exiting the system through a converging nozzle. In this part, a one-dimensional (1D) detailed chemistry calculation of the reacting flow at the exit of the jet is conducted. The mixture of gases is allowed to expand isentropically to the conditions expected at the exit of the supersonic jet. The viscous and conducting flow field through a shock wave is calculated using the GRI3.0 kinetic scheme. The structure of the standing detonation downstream of the Mach stem is examined for different initial concentrations of hydrogen atoms. Results point to the extreme suppression of chemistry through the supersonic flow field and the creation of low Damköhler numbers in the exit of the miniature burner.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)EY.1943-7897.0000574</doi></addata></record>
fulltext fulltext
identifier ISSN: 0733-9402
ispartof Journal of energy engineering, 2018-10, Vol.144 (5)
issn 0733-9402
1943-7897
language eng
recordid cdi_proquest_journals_2086476362
source American Society of Civil Engineers:NESLI2:Journals:2014
subjects Chemistry
Detonation
Gases
Hydrogen atoms
Mathematical analysis
Methane
Nozzles
Organic chemistry
Reacting flow
Shock waves
Supersonic flow
Technical Papers
title Miniature Supersonic Burner for the Study of Combustion at Extreme Conditions. II: External Flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A17%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Miniature%20Supersonic%20Burner%20for%20the%20Study%20of%20Combustion%20at%20Extreme%20Conditions.%20II:%20External%20Flow&rft.jtitle=Journal%20of%20energy%20engineering&rft.au=Karpetis,%20Adonios%20N&rft.date=2018-10-01&rft.volume=144&rft.issue=5&rft.issn=0733-9402&rft.eissn=1943-7897&rft_id=info:doi/10.1061/(ASCE)EY.1943-7897.0000574&rft_dat=%3Cproquest_cross%3E2086476362%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2086476362&rft_id=info:pmid/&rfr_iscdi=true