General PT-Symmetric Matrices

Three ways of constructing a non-Hermitian matrix with possible all real eigenvalues are discussed. They are PT symmetry, pseudo-Hermiticity, and generalized PT symmetry. Parameter counting is provided for each class. All three classes of matrices have more real parameters than a Hermitian matrix wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2012-12
Hauptverfasser: Jia-wen, Deng, Guenther, Uwe, Qing-hai Wang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Jia-wen, Deng
Guenther, Uwe
Qing-hai Wang
description Three ways of constructing a non-Hermitian matrix with possible all real eigenvalues are discussed. They are PT symmetry, pseudo-Hermiticity, and generalized PT symmetry. Parameter counting is provided for each class. All three classes of matrices have more real parameters than a Hermitian matrix with the same dimension. The generalized PT-symmetric matrices are most general among the three. All self-adjoint matrices process a generalized PT symmetry. For a given matrix, it can be both PT-symmetric and P'-pseudo-Hermitian with respect to some P' operators. The relation between corresponding P and P' operators is established. The Jordan block structures of each class are discussed. Explicit examples in 2x2 are shown.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086450742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086450742</sourcerecordid><originalsourceid>FETCH-proquest_journals_20864507423</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQdU_NSy1KzFEICNENrszNTS0pykxW8E0EUanFPAysaYk5xam8UJqbQdnNNcTZQ7egKL-wNLW4JD4rv7QoDygVb2RgYWZiamBuYmRMnCoAPcgrsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086450742</pqid></control><display><type>article</type><title>General PT-Symmetric Matrices</title><source>Freely Accessible Journals at publisher websites</source><creator>Jia-wen, Deng ; Guenther, Uwe ; Qing-hai Wang</creator><creatorcontrib>Jia-wen, Deng ; Guenther, Uwe ; Qing-hai Wang</creatorcontrib><description>Three ways of constructing a non-Hermitian matrix with possible all real eigenvalues are discussed. They are PT symmetry, pseudo-Hermiticity, and generalized PT symmetry. Parameter counting is provided for each class. All three classes of matrices have more real parameters than a Hermitian matrix with the same dimension. The generalized PT-symmetric matrices are most general among the three. All self-adjoint matrices process a generalized PT symmetry. For a given matrix, it can be both PT-symmetric and P'-pseudo-Hermitian with respect to some P' operators. The relation between corresponding P and P' operators is established. The Jordan block structures of each class are discussed. Explicit examples in 2x2 are shown.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Eigenvalues ; Mathematical analysis ; Matrix methods ; Operators (mathematics) ; Parameters ; Symmetry</subject><ispartof>arXiv.org, 2012-12</ispartof><rights>2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Jia-wen, Deng</creatorcontrib><creatorcontrib>Guenther, Uwe</creatorcontrib><creatorcontrib>Qing-hai Wang</creatorcontrib><title>General PT-Symmetric Matrices</title><title>arXiv.org</title><description>Three ways of constructing a non-Hermitian matrix with possible all real eigenvalues are discussed. They are PT symmetry, pseudo-Hermiticity, and generalized PT symmetry. Parameter counting is provided for each class. All three classes of matrices have more real parameters than a Hermitian matrix with the same dimension. The generalized PT-symmetric matrices are most general among the three. All self-adjoint matrices process a generalized PT symmetry. For a given matrix, it can be both PT-symmetric and P'-pseudo-Hermitian with respect to some P' operators. The relation between corresponding P and P' operators is established. The Jordan block structures of each class are discussed. Explicit examples in 2x2 are shown.</description><subject>Eigenvalues</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Operators (mathematics)</subject><subject>Parameters</subject><subject>Symmetry</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQdU_NSy1KzFEICNENrszNTS0pykxW8E0EUanFPAysaYk5xam8UJqbQdnNNcTZQ7egKL-wNLW4JD4rv7QoDygVb2RgYWZiamBuYmRMnCoAPcgrsg</recordid><startdate>20121209</startdate><enddate>20121209</enddate><creator>Jia-wen, Deng</creator><creator>Guenther, Uwe</creator><creator>Qing-hai Wang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20121209</creationdate><title>General PT-Symmetric Matrices</title><author>Jia-wen, Deng ; Guenther, Uwe ; Qing-hai Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20864507423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Eigenvalues</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Operators (mathematics)</topic><topic>Parameters</topic><topic>Symmetry</topic><toplevel>online_resources</toplevel><creatorcontrib>Jia-wen, Deng</creatorcontrib><creatorcontrib>Guenther, Uwe</creatorcontrib><creatorcontrib>Qing-hai Wang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia-wen, Deng</au><au>Guenther, Uwe</au><au>Qing-hai Wang</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>General PT-Symmetric Matrices</atitle><jtitle>arXiv.org</jtitle><date>2012-12-09</date><risdate>2012</risdate><eissn>2331-8422</eissn><abstract>Three ways of constructing a non-Hermitian matrix with possible all real eigenvalues are discussed. They are PT symmetry, pseudo-Hermiticity, and generalized PT symmetry. Parameter counting is provided for each class. All three classes of matrices have more real parameters than a Hermitian matrix with the same dimension. The generalized PT-symmetric matrices are most general among the three. All self-adjoint matrices process a generalized PT symmetry. For a given matrix, it can be both PT-symmetric and P'-pseudo-Hermitian with respect to some P' operators. The relation between corresponding P and P' operators is established. The Jordan block structures of each class are discussed. Explicit examples in 2x2 are shown.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2012-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2086450742
source Freely Accessible Journals at publisher websites
subjects Eigenvalues
Mathematical analysis
Matrix methods
Operators (mathematics)
Parameters
Symmetry
title General PT-Symmetric Matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T15%3A58%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=General%20PT-Symmetric%20Matrices&rft.jtitle=arXiv.org&rft.au=Jia-wen,%20Deng&rft.date=2012-12-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086450742%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2086450742&rft_id=info:pmid/&rfr_iscdi=true