Data Life Cycle Labs, A New Concept to Support Data-Intensive Science
In many sciences the increasing amounts of data are reaching the limit of established data handling and processing. With four large research centers of the German Helmholtz association the Large Scale Data Management and Analysis (LSDMA) project supports an initial set of scientific projects, initia...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2012-12 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Jos van Wezel Streit, Achim Jung, Christopher Stotzka, Rainer Halstenberg, Silke Rigoll, Fabian Garcia, Ariel Heiss, Andreas Schwarz, Kilian Gasthuber, Martin Giesler, André |
description | In many sciences the increasing amounts of data are reaching the limit of established data handling and processing. With four large research centers of the German Helmholtz association the Large Scale Data Management and Analysis (LSDMA) project supports an initial set of scientific projects, initiatives and instruments to organize and efficiently analyze the increasing amount of data produced in modern science. LSDMA bridges the gap between data production and data analysis using a novel approach by combining specific community support and generic, cross community development. In the Data Life Cycle Labs (DLCL) experts from the data domain work closely with scientific groups of selected research domains in joint R&D where community-specific data life cycles are iteratively optimized, data and meta-data formats are defined and standardized, simple access and use is established as well as data and scientific insights are preserved in long-term and open accessible archives. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086436114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086436114</sourcerecordid><originalsourceid>FETCH-proquest_journals_20864361143</originalsourceid><addsrcrecordid>eNqNykELgjAYgOERBEn5Hz7omjC3aV7DjALpYndZ8gkT2dY2i_59Bv2ATu_hfRYkYpynSSEYW5HY-4FSyvI9yzIekeoog4Ra9QjluxsRann3OzjAFV9QGt2hDRAMNJO1xgX48uSiA2qvnghNp3A2G7Ls5egx_nVNtqfqVp4T68xjQh_awUxOz6tltMgFz9NU8P_UB30gORU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086436114</pqid></control><display><type>article</type><title>Data Life Cycle Labs, A New Concept to Support Data-Intensive Science</title><source>Free E- Journals</source><creator>Jos van Wezel ; Streit, Achim ; Jung, Christopher ; Stotzka, Rainer ; Halstenberg, Silke ; Rigoll, Fabian ; Garcia, Ariel ; Heiss, Andreas ; Schwarz, Kilian ; Gasthuber, Martin ; Giesler, André</creator><creatorcontrib>Jos van Wezel ; Streit, Achim ; Jung, Christopher ; Stotzka, Rainer ; Halstenberg, Silke ; Rigoll, Fabian ; Garcia, Ariel ; Heiss, Andreas ; Schwarz, Kilian ; Gasthuber, Martin ; Giesler, André</creatorcontrib><description>In many sciences the increasing amounts of data are reaching the limit of established data handling and processing. With four large research centers of the German Helmholtz association the Large Scale Data Management and Analysis (LSDMA) project supports an initial set of scientific projects, initiatives and instruments to organize and efficiently analyze the increasing amount of data produced in modern science. LSDMA bridges the gap between data production and data analysis using a novel approach by combining specific community support and generic, cross community development. In the Data Life Cycle Labs (DLCL) experts from the data domain work closely with scientific groups of selected research domains in joint R&D where community-specific data life cycles are iteratively optimized, data and meta-data formats are defined and standardized, simple access and use is established as well as data and scientific insights are preserved in long-term and open accessible archives.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Community development ; Data analysis ; Data management ; Domains ; Project management ; R&D ; Research & development ; Research facilities</subject><ispartof>arXiv.org, 2012-12</ispartof><rights>2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Jos van Wezel</creatorcontrib><creatorcontrib>Streit, Achim</creatorcontrib><creatorcontrib>Jung, Christopher</creatorcontrib><creatorcontrib>Stotzka, Rainer</creatorcontrib><creatorcontrib>Halstenberg, Silke</creatorcontrib><creatorcontrib>Rigoll, Fabian</creatorcontrib><creatorcontrib>Garcia, Ariel</creatorcontrib><creatorcontrib>Heiss, Andreas</creatorcontrib><creatorcontrib>Schwarz, Kilian</creatorcontrib><creatorcontrib>Gasthuber, Martin</creatorcontrib><creatorcontrib>Giesler, André</creatorcontrib><title>Data Life Cycle Labs, A New Concept to Support Data-Intensive Science</title><title>arXiv.org</title><description>In many sciences the increasing amounts of data are reaching the limit of established data handling and processing. With four large research centers of the German Helmholtz association the Large Scale Data Management and Analysis (LSDMA) project supports an initial set of scientific projects, initiatives and instruments to organize and efficiently analyze the increasing amount of data produced in modern science. LSDMA bridges the gap between data production and data analysis using a novel approach by combining specific community support and generic, cross community development. In the Data Life Cycle Labs (DLCL) experts from the data domain work closely with scientific groups of selected research domains in joint R&D where community-specific data life cycles are iteratively optimized, data and meta-data formats are defined and standardized, simple access and use is established as well as data and scientific insights are preserved in long-term and open accessible archives.</description><subject>Community development</subject><subject>Data analysis</subject><subject>Data management</subject><subject>Domains</subject><subject>Project management</subject><subject>R&D</subject><subject>Research & development</subject><subject>Research facilities</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNykELgjAYgOERBEn5Hz7omjC3aV7DjALpYndZ8gkT2dY2i_59Bv2ATu_hfRYkYpynSSEYW5HY-4FSyvI9yzIekeoog4Ra9QjluxsRann3OzjAFV9QGt2hDRAMNJO1xgX48uSiA2qvnghNp3A2G7Ls5egx_nVNtqfqVp4T68xjQh_awUxOz6tltMgFz9NU8P_UB30gORU</recordid><startdate>20121221</startdate><enddate>20121221</enddate><creator>Jos van Wezel</creator><creator>Streit, Achim</creator><creator>Jung, Christopher</creator><creator>Stotzka, Rainer</creator><creator>Halstenberg, Silke</creator><creator>Rigoll, Fabian</creator><creator>Garcia, Ariel</creator><creator>Heiss, Andreas</creator><creator>Schwarz, Kilian</creator><creator>Gasthuber, Martin</creator><creator>Giesler, André</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20121221</creationdate><title>Data Life Cycle Labs, A New Concept to Support Data-Intensive Science</title><author>Jos van Wezel ; Streit, Achim ; Jung, Christopher ; Stotzka, Rainer ; Halstenberg, Silke ; Rigoll, Fabian ; Garcia, Ariel ; Heiss, Andreas ; Schwarz, Kilian ; Gasthuber, Martin ; Giesler, André</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20864361143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Community development</topic><topic>Data analysis</topic><topic>Data management</topic><topic>Domains</topic><topic>Project management</topic><topic>R&D</topic><topic>Research & development</topic><topic>Research facilities</topic><toplevel>online_resources</toplevel><creatorcontrib>Jos van Wezel</creatorcontrib><creatorcontrib>Streit, Achim</creatorcontrib><creatorcontrib>Jung, Christopher</creatorcontrib><creatorcontrib>Stotzka, Rainer</creatorcontrib><creatorcontrib>Halstenberg, Silke</creatorcontrib><creatorcontrib>Rigoll, Fabian</creatorcontrib><creatorcontrib>Garcia, Ariel</creatorcontrib><creatorcontrib>Heiss, Andreas</creatorcontrib><creatorcontrib>Schwarz, Kilian</creatorcontrib><creatorcontrib>Gasthuber, Martin</creatorcontrib><creatorcontrib>Giesler, André</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jos van Wezel</au><au>Streit, Achim</au><au>Jung, Christopher</au><au>Stotzka, Rainer</au><au>Halstenberg, Silke</au><au>Rigoll, Fabian</au><au>Garcia, Ariel</au><au>Heiss, Andreas</au><au>Schwarz, Kilian</au><au>Gasthuber, Martin</au><au>Giesler, André</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Data Life Cycle Labs, A New Concept to Support Data-Intensive Science</atitle><jtitle>arXiv.org</jtitle><date>2012-12-21</date><risdate>2012</risdate><eissn>2331-8422</eissn><abstract>In many sciences the increasing amounts of data are reaching the limit of established data handling and processing. With four large research centers of the German Helmholtz association the Large Scale Data Management and Analysis (LSDMA) project supports an initial set of scientific projects, initiatives and instruments to organize and efficiently analyze the increasing amount of data produced in modern science. LSDMA bridges the gap between data production and data analysis using a novel approach by combining specific community support and generic, cross community development. In the Data Life Cycle Labs (DLCL) experts from the data domain work closely with scientific groups of selected research domains in joint R&D where community-specific data life cycles are iteratively optimized, data and meta-data formats are defined and standardized, simple access and use is established as well as data and scientific insights are preserved in long-term and open accessible archives.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2012-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2086436114 |
source | Free E- Journals |
subjects | Community development Data analysis Data management Domains Project management R&D Research & development Research facilities |
title | Data Life Cycle Labs, A New Concept to Support Data-Intensive Science |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A03%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Data%20Life%20Cycle%20Labs,%20A%20New%20Concept%20to%20Support%20Data-Intensive%20Science&rft.jtitle=arXiv.org&rft.au=Jos%20van%20Wezel&rft.date=2012-12-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086436114%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2086436114&rft_id=info:pmid/&rfr_iscdi=true |