On Radicals of Semirings and Related Problems

The aim of this paper is to develop an `external' Kurosh-Amitsur radical theory of semirings and, using this approach, to obtain some fundamental results regarding two Jacobson type of radicals --- the Jacobson-Bourne, J-, radical and a very natural its variation, J_{s}-radical --- of hemirings...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2012-06
Hauptverfasser: Katsov, Y, Nam, T G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Katsov, Y
Nam, T G
description The aim of this paper is to develop an `external' Kurosh-Amitsur radical theory of semirings and, using this approach, to obtain some fundamental results regarding two Jacobson type of radicals --- the Jacobson-Bourne, J-, radical and a very natural its variation, J_{s}-radical --- of hemirings, as well as the Brown-McCoy, R_{BM}-, radical of hemirings. Among the new central results of the paper, we single out the following ones: Theorems unifying two, internal and external, approches to the Kurosh-Amitzur radical theory of hemirings; A characterization of J-semisimple hemirings; A description of J-semisimple congruence-simple hemirings; A characterization of finite additively-idempotent J_{s}-semisimple hemirings; Complete discriptions of R_{BM}-semisimple commutative and lattice-ordered hemirings; Semiring versions of the well-known classical ring results---Nakayama's and Hopkins Lemmas and Jacobson-Chevalley Density Theorem; Establishing the fundamental relationship between the radicals J, J_{s}, and R_{BM} of hemirings R and matrix hemirings M_{n}(R); Establishing the matric-extensibleness of the radical classes of the Jacobson, Brown-McCoy, and J_{s}-, radicals of hemirings; Showing that the J-semisimplicity, J_{s}-semisimplicity, and R_{BM}-semisimplicity of semirings are Morita invariant properties.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086401011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086401011</sourcerecordid><originalsourceid>FETCH-proquest_journals_20864010113</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ9c9TCEpMyUxOzClWyE9TCE7NzSzKzEsvVkjMS1EISs1JLElNUQgoyk_KSc0t5mFgTQMqTOWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwMLMxMDQwNDQ2PiVAEAbvYxPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086401011</pqid></control><display><type>article</type><title>On Radicals of Semirings and Related Problems</title><source>Free E- Journals</source><creator>Katsov, Y ; Nam, T G</creator><creatorcontrib>Katsov, Y ; Nam, T G</creatorcontrib><description>The aim of this paper is to develop an `external' Kurosh-Amitsur radical theory of semirings and, using this approach, to obtain some fundamental results regarding two Jacobson type of radicals --- the Jacobson-Bourne, J-, radical and a very natural its variation, J_{s}-radical --- of hemirings, as well as the Brown-McCoy, R_{BM}-, radical of hemirings. Among the new central results of the paper, we single out the following ones: Theorems unifying two, internal and external, approches to the Kurosh-Amitzur radical theory of hemirings; A characterization of J-semisimple hemirings; A description of J-semisimple congruence-simple hemirings; A characterization of finite additively-idempotent J_{s}-semisimple hemirings; Complete discriptions of R_{BM}-semisimple commutative and lattice-ordered hemirings; Semiring versions of the well-known classical ring results---Nakayama's and Hopkins Lemmas and Jacobson-Chevalley Density Theorem; Establishing the fundamental relationship between the radicals J, J_{s}, and R_{BM} of hemirings R and matrix hemirings M_{n}(R); Establishing the matric-extensibleness of the radical classes of the Jacobson, Brown-McCoy, and J_{s}-, radicals of hemirings; Showing that the J-semisimplicity, J_{s}-semisimplicity, and R_{BM}-semisimplicity of semirings are Morita invariant properties.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Radicals ; Rings (mathematics) ; Theorems</subject><ispartof>arXiv.org, 2012-06</ispartof><rights>2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Katsov, Y</creatorcontrib><creatorcontrib>Nam, T G</creatorcontrib><title>On Radicals of Semirings and Related Problems</title><title>arXiv.org</title><description>The aim of this paper is to develop an `external' Kurosh-Amitsur radical theory of semirings and, using this approach, to obtain some fundamental results regarding two Jacobson type of radicals --- the Jacobson-Bourne, J-, radical and a very natural its variation, J_{s}-radical --- of hemirings, as well as the Brown-McCoy, R_{BM}-, radical of hemirings. Among the new central results of the paper, we single out the following ones: Theorems unifying two, internal and external, approches to the Kurosh-Amitzur radical theory of hemirings; A characterization of J-semisimple hemirings; A description of J-semisimple congruence-simple hemirings; A characterization of finite additively-idempotent J_{s}-semisimple hemirings; Complete discriptions of R_{BM}-semisimple commutative and lattice-ordered hemirings; Semiring versions of the well-known classical ring results---Nakayama's and Hopkins Lemmas and Jacobson-Chevalley Density Theorem; Establishing the fundamental relationship between the radicals J, J_{s}, and R_{BM} of hemirings R and matrix hemirings M_{n}(R); Establishing the matric-extensibleness of the radical classes of the Jacobson, Brown-McCoy, and J_{s}-, radicals of hemirings; Showing that the J-semisimplicity, J_{s}-semisimplicity, and R_{BM}-semisimplicity of semirings are Morita invariant properties.</description><subject>Radicals</subject><subject>Rings (mathematics)</subject><subject>Theorems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ9c9TCEpMyUxOzClWyE9TCE7NzSzKzEsvVkjMS1EISs1JLElNUQgoyk_KSc0t5mFgTQMqTOWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwMLMxMDQwNDQ2PiVAEAbvYxPg</recordid><startdate>20120607</startdate><enddate>20120607</enddate><creator>Katsov, Y</creator><creator>Nam, T G</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20120607</creationdate><title>On Radicals of Semirings and Related Problems</title><author>Katsov, Y ; Nam, T G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20864010113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Radicals</topic><topic>Rings (mathematics)</topic><topic>Theorems</topic><toplevel>online_resources</toplevel><creatorcontrib>Katsov, Y</creatorcontrib><creatorcontrib>Nam, T G</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katsov, Y</au><au>Nam, T G</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On Radicals of Semirings and Related Problems</atitle><jtitle>arXiv.org</jtitle><date>2012-06-07</date><risdate>2012</risdate><eissn>2331-8422</eissn><abstract>The aim of this paper is to develop an `external' Kurosh-Amitsur radical theory of semirings and, using this approach, to obtain some fundamental results regarding two Jacobson type of radicals --- the Jacobson-Bourne, J-, radical and a very natural its variation, J_{s}-radical --- of hemirings, as well as the Brown-McCoy, R_{BM}-, radical of hemirings. Among the new central results of the paper, we single out the following ones: Theorems unifying two, internal and external, approches to the Kurosh-Amitzur radical theory of hemirings; A characterization of J-semisimple hemirings; A description of J-semisimple congruence-simple hemirings; A characterization of finite additively-idempotent J_{s}-semisimple hemirings; Complete discriptions of R_{BM}-semisimple commutative and lattice-ordered hemirings; Semiring versions of the well-known classical ring results---Nakayama's and Hopkins Lemmas and Jacobson-Chevalley Density Theorem; Establishing the fundamental relationship between the radicals J, J_{s}, and R_{BM} of hemirings R and matrix hemirings M_{n}(R); Establishing the matric-extensibleness of the radical classes of the Jacobson, Brown-McCoy, and J_{s}-, radicals of hemirings; Showing that the J-semisimplicity, J_{s}-semisimplicity, and R_{BM}-semisimplicity of semirings are Morita invariant properties.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2012-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2086401011
source Free E- Journals
subjects Radicals
Rings (mathematics)
Theorems
title On Radicals of Semirings and Related Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T15%3A00%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20Radicals%20of%20Semirings%20and%20Related%20Problems&rft.jtitle=arXiv.org&rft.au=Katsov,%20Y&rft.date=2012-06-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086401011%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2086401011&rft_id=info:pmid/&rfr_iscdi=true