Bayesian Nonexhaustive Learning for Online Discovery and Modeling of Emerging Classes
We present a framework for online inference in the presence of a nonexhaustively defined set of classes that incorporates supervised classification with class discovery and modeling. A Dirichlet process prior (DPP) model defined over class distributions ensures that both known and unknown class dist...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2012-06 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Dundar, Murat Akova, Ferit Qi, Alan Rajwa, Bartek |
description | We present a framework for online inference in the presence of a nonexhaustively defined set of classes that incorporates supervised classification with class discovery and modeling. A Dirichlet process prior (DPP) model defined over class distributions ensures that both known and unknown class distributions originate according to a common base distribution. In an attempt to automatically discover potentially interesting class formations, the prior model is coupled with a suitably chosen data model, and sequential Monte Carlo sampling is used to perform online inference. Our research is driven by a biodetection application, where a new class of pathogen may suddenly appear, and the rapid increase in the number of samples originating from this class indicates the onset of an outbreak. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086390129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086390129</sourcerecordid><originalsourceid>FETCH-proquest_journals_20863901293</originalsourceid><addsrcrecordid>eNqNit0KgjAYQEcQJOU7DLoW5pamt5nRRT83dS0jP22yttqnkm9fQg_Q1TlwzoR4XIgwSFacz4iP2DDGeLzmUSQ8ct3IAVBJQ0_WwPsuO2xVD_QA0hllalpZR89GKwN0q_Bme3ADlaakR1uCHg9b0fwBrh490xIRcEGmldQI_o9zstzll2wfPJ19dYBt0djOmW8qOEtikbKQp-K_6wPQDUDO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086390129</pqid></control><display><type>article</type><title>Bayesian Nonexhaustive Learning for Online Discovery and Modeling of Emerging Classes</title><source>Free E- Journals</source><creator>Dundar, Murat ; Akova, Ferit ; Qi, Alan ; Rajwa, Bartek</creator><creatorcontrib>Dundar, Murat ; Akova, Ferit ; Qi, Alan ; Rajwa, Bartek</creatorcontrib><description>We present a framework for online inference in the presence of a nonexhaustively defined set of classes that incorporates supervised classification with class discovery and modeling. A Dirichlet process prior (DPP) model defined over class distributions ensures that both known and unknown class distributions originate according to a common base distribution. In an attempt to automatically discover potentially interesting class formations, the prior model is coupled with a suitably chosen data model, and sequential Monte Carlo sampling is used to perform online inference. Our research is driven by a biodetection application, where a new class of pathogen may suddenly appear, and the rapid increase in the number of samples originating from this class indicates the onset of an outbreak.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bayesian analysis ; Computer simulation ; Dirichlet problem ; Distance learning ; Inference ; Machine learning ; Modelling ; Outbreaks</subject><ispartof>arXiv.org, 2012-06</ispartof><rights>2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Dundar, Murat</creatorcontrib><creatorcontrib>Akova, Ferit</creatorcontrib><creatorcontrib>Qi, Alan</creatorcontrib><creatorcontrib>Rajwa, Bartek</creatorcontrib><title>Bayesian Nonexhaustive Learning for Online Discovery and Modeling of Emerging Classes</title><title>arXiv.org</title><description>We present a framework for online inference in the presence of a nonexhaustively defined set of classes that incorporates supervised classification with class discovery and modeling. A Dirichlet process prior (DPP) model defined over class distributions ensures that both known and unknown class distributions originate according to a common base distribution. In an attempt to automatically discover potentially interesting class formations, the prior model is coupled with a suitably chosen data model, and sequential Monte Carlo sampling is used to perform online inference. Our research is driven by a biodetection application, where a new class of pathogen may suddenly appear, and the rapid increase in the number of samples originating from this class indicates the onset of an outbreak.</description><subject>Bayesian analysis</subject><subject>Computer simulation</subject><subject>Dirichlet problem</subject><subject>Distance learning</subject><subject>Inference</subject><subject>Machine learning</subject><subject>Modelling</subject><subject>Outbreaks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNit0KgjAYQEcQJOU7DLoW5pamt5nRRT83dS0jP22yttqnkm9fQg_Q1TlwzoR4XIgwSFacz4iP2DDGeLzmUSQ8ct3IAVBJQ0_WwPsuO2xVD_QA0hllalpZR89GKwN0q_Bme3ADlaakR1uCHg9b0fwBrh490xIRcEGmldQI_o9zstzll2wfPJ19dYBt0djOmW8qOEtikbKQp-K_6wPQDUDO</recordid><startdate>20120618</startdate><enddate>20120618</enddate><creator>Dundar, Murat</creator><creator>Akova, Ferit</creator><creator>Qi, Alan</creator><creator>Rajwa, Bartek</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20120618</creationdate><title>Bayesian Nonexhaustive Learning for Online Discovery and Modeling of Emerging Classes</title><author>Dundar, Murat ; Akova, Ferit ; Qi, Alan ; Rajwa, Bartek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20863901293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bayesian analysis</topic><topic>Computer simulation</topic><topic>Dirichlet problem</topic><topic>Distance learning</topic><topic>Inference</topic><topic>Machine learning</topic><topic>Modelling</topic><topic>Outbreaks</topic><toplevel>online_resources</toplevel><creatorcontrib>Dundar, Murat</creatorcontrib><creatorcontrib>Akova, Ferit</creatorcontrib><creatorcontrib>Qi, Alan</creatorcontrib><creatorcontrib>Rajwa, Bartek</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dundar, Murat</au><au>Akova, Ferit</au><au>Qi, Alan</au><au>Rajwa, Bartek</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Bayesian Nonexhaustive Learning for Online Discovery and Modeling of Emerging Classes</atitle><jtitle>arXiv.org</jtitle><date>2012-06-18</date><risdate>2012</risdate><eissn>2331-8422</eissn><abstract>We present a framework for online inference in the presence of a nonexhaustively defined set of classes that incorporates supervised classification with class discovery and modeling. A Dirichlet process prior (DPP) model defined over class distributions ensures that both known and unknown class distributions originate according to a common base distribution. In an attempt to automatically discover potentially interesting class formations, the prior model is coupled with a suitably chosen data model, and sequential Monte Carlo sampling is used to perform online inference. Our research is driven by a biodetection application, where a new class of pathogen may suddenly appear, and the rapid increase in the number of samples originating from this class indicates the onset of an outbreak.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2012-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2086390129 |
source | Free E- Journals |
subjects | Bayesian analysis Computer simulation Dirichlet problem Distance learning Inference Machine learning Modelling Outbreaks |
title | Bayesian Nonexhaustive Learning for Online Discovery and Modeling of Emerging Classes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T22%3A41%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Bayesian%20Nonexhaustive%20Learning%20for%20Online%20Discovery%20and%20Modeling%20of%20Emerging%20Classes&rft.jtitle=arXiv.org&rft.au=Dundar,%20Murat&rft.date=2012-06-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086390129%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2086390129&rft_id=info:pmid/&rfr_iscdi=true |