Vertical leakage mechanism in GaN on Si high electron mobility transistor buffer layers

Control of leakage currents in the buffer layers of GaN based transistors on Si substrates is vital for the demonstration of high performance devices. Here, we show that the growth conditions during the metal organic chemical vapour deposition growth of the graded AlGaN strain relief layers (SRLs) c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2018-08, Vol.124 (5)
Hauptverfasser: Choi, F. S., Griffiths, J. T., Ren, Chris, Lee, K. B., Zaidi, Z. H., Houston, P. A., Guiney, I., Humphreys, C. J., Oliver, R. A., Wallis, D. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Journal of applied physics
container_volume 124
creator Choi, F. S.
Griffiths, J. T.
Ren, Chris
Lee, K. B.
Zaidi, Z. H.
Houston, P. A.
Guiney, I.
Humphreys, C. J.
Oliver, R. A.
Wallis, D. J.
description Control of leakage currents in the buffer layers of GaN based transistors on Si substrates is vital for the demonstration of high performance devices. Here, we show that the growth conditions during the metal organic chemical vapour deposition growth of the graded AlGaN strain relief layers (SRLs) can significantly influence the vertical leakage. Using scanning capacitance microscopy, secondary ion mass spectrometry, and transmission electron microscopy, we investigate the origins of leakage paths and show that they result from the preferential incorporation of oxygen impurities on the side wall facets of the inverted hexagonal pyramidal pits which can occur during the growth of the graded AlGaN SRL. We also show that when 2D growth of the AlGaN SRL is maintained a significant increase in the breakdown voltage can be achieved even in much thinner buffer layer structures. These results demonstrate the importance of controlling the morphology of the high electron mobility transistor buffer layer as even at a very low density the leakage paths identified would provide leakage paths in large area devices.
doi_str_mv 10.1063/1.5027680
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2086295529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086295529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-50290b7c3b9dd5552789bcdd7931470a37add07e8b978428b1c52d2f213fd5973</originalsourceid><addsrcrecordid>eNqd0E1LAzEQBuAgCtbqwX8Q8KSwOkmaJjlK0SoUPfh1DNkk26ZuNzVJhf57V1rw7mlgeOadYRA6J3BNYMxuyDUHKsYSDtCAgFSV4BwO0QCAkkoqoY7RSc5LAEIkUwP08e5TCda0uPXm08w9Xnm7MF3IKxw6PDVPOHb4JeBFmC-wb70tqW-sYh3aULa4JNPlkEtMuN40jU-4NVuf8ik6akyb_dm-DtHb_d3r5KGaPU8fJ7ezyo6oLFV_rIJaWFYr5zjnVEhVW-eEYmQkwDBhnAPhZa2E7CdqYjl1tKGENY4rwYboYpe7TvFr43PRy7hJXb9SU5BjqvpM1avLnbIp5px8o9cprEzaagL692-a6P3fenu1s9mGYkqI3f_wd0x_UK9dw34Ao0R68A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086295529</pqid></control><display><type>article</type><title>Vertical leakage mechanism in GaN on Si high electron mobility transistor buffer layers</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Choi, F. S. ; Griffiths, J. T. ; Ren, Chris ; Lee, K. B. ; Zaidi, Z. H. ; Houston, P. A. ; Guiney, I. ; Humphreys, C. J. ; Oliver, R. A. ; Wallis, D. J.</creator><creatorcontrib>Choi, F. S. ; Griffiths, J. T. ; Ren, Chris ; Lee, K. B. ; Zaidi, Z. H. ; Houston, P. A. ; Guiney, I. ; Humphreys, C. J. ; Oliver, R. A. ; Wallis, D. J.</creatorcontrib><description>Control of leakage currents in the buffer layers of GaN based transistors on Si substrates is vital for the demonstration of high performance devices. Here, we show that the growth conditions during the metal organic chemical vapour deposition growth of the graded AlGaN strain relief layers (SRLs) can significantly influence the vertical leakage. Using scanning capacitance microscopy, secondary ion mass spectrometry, and transmission electron microscopy, we investigate the origins of leakage paths and show that they result from the preferential incorporation of oxygen impurities on the side wall facets of the inverted hexagonal pyramidal pits which can occur during the growth of the graded AlGaN SRL. We also show that when 2D growth of the AlGaN SRL is maintained a significant increase in the breakdown voltage can be achieved even in much thinner buffer layer structures. These results demonstrate the importance of controlling the morphology of the high electron mobility transistor buffer layer as even at a very low density the leakage paths identified would provide leakage paths in large area devices.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5027680</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aluminum gallium nitrides ; Applied physics ; Buffer layers ; High electron mobility transistors ; Leakage ; Metalorganic chemical vapor deposition ; Microscopy ; Morphology ; Organic chemicals ; Organic chemistry ; Secondary ion mass spectrometry ; Semiconductor devices ; Silicon substrates ; Transistors ; Transmission electron microscopy</subject><ispartof>Journal of applied physics, 2018-08, Vol.124 (5)</ispartof><rights>Author(s)</rights><rights>2018 Author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-50290b7c3b9dd5552789bcdd7931470a37add07e8b978428b1c52d2f213fd5973</citedby><cites>FETCH-LOGICAL-c428t-50290b7c3b9dd5552789bcdd7931470a37add07e8b978428b1c52d2f213fd5973</cites><orcidid>0000-0001-5053-3380 ; 0000-0003-0029-3993 ; 0000-0002-2088-6166 ; 0000-0001-6907-9317 ; 0000-0002-0787-6713 ; 0000-0002-1198-1372</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.5027680$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids></links><search><creatorcontrib>Choi, F. S.</creatorcontrib><creatorcontrib>Griffiths, J. T.</creatorcontrib><creatorcontrib>Ren, Chris</creatorcontrib><creatorcontrib>Lee, K. B.</creatorcontrib><creatorcontrib>Zaidi, Z. H.</creatorcontrib><creatorcontrib>Houston, P. A.</creatorcontrib><creatorcontrib>Guiney, I.</creatorcontrib><creatorcontrib>Humphreys, C. J.</creatorcontrib><creatorcontrib>Oliver, R. A.</creatorcontrib><creatorcontrib>Wallis, D. J.</creatorcontrib><title>Vertical leakage mechanism in GaN on Si high electron mobility transistor buffer layers</title><title>Journal of applied physics</title><description>Control of leakage currents in the buffer layers of GaN based transistors on Si substrates is vital for the demonstration of high performance devices. Here, we show that the growth conditions during the metal organic chemical vapour deposition growth of the graded AlGaN strain relief layers (SRLs) can significantly influence the vertical leakage. Using scanning capacitance microscopy, secondary ion mass spectrometry, and transmission electron microscopy, we investigate the origins of leakage paths and show that they result from the preferential incorporation of oxygen impurities on the side wall facets of the inverted hexagonal pyramidal pits which can occur during the growth of the graded AlGaN SRL. We also show that when 2D growth of the AlGaN SRL is maintained a significant increase in the breakdown voltage can be achieved even in much thinner buffer layer structures. These results demonstrate the importance of controlling the morphology of the high electron mobility transistor buffer layer as even at a very low density the leakage paths identified would provide leakage paths in large area devices.</description><subject>Aluminum gallium nitrides</subject><subject>Applied physics</subject><subject>Buffer layers</subject><subject>High electron mobility transistors</subject><subject>Leakage</subject><subject>Metalorganic chemical vapor deposition</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Organic chemicals</subject><subject>Organic chemistry</subject><subject>Secondary ion mass spectrometry</subject><subject>Semiconductor devices</subject><subject>Silicon substrates</subject><subject>Transistors</subject><subject>Transmission electron microscopy</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LAzEQBuAgCtbqwX8Q8KSwOkmaJjlK0SoUPfh1DNkk26ZuNzVJhf57V1rw7mlgeOadYRA6J3BNYMxuyDUHKsYSDtCAgFSV4BwO0QCAkkoqoY7RSc5LAEIkUwP08e5TCda0uPXm08w9Xnm7MF3IKxw6PDVPOHb4JeBFmC-wb70tqW-sYh3aULa4JNPlkEtMuN40jU-4NVuf8ik6akyb_dm-DtHb_d3r5KGaPU8fJ7ezyo6oLFV_rIJaWFYr5zjnVEhVW-eEYmQkwDBhnAPhZa2E7CdqYjl1tKGENY4rwYboYpe7TvFr43PRy7hJXb9SU5BjqvpM1avLnbIp5px8o9cprEzaagL692-a6P3fenu1s9mGYkqI3f_wd0x_UK9dw34Ao0R68A</recordid><startdate>20180807</startdate><enddate>20180807</enddate><creator>Choi, F. S.</creator><creator>Griffiths, J. T.</creator><creator>Ren, Chris</creator><creator>Lee, K. B.</creator><creator>Zaidi, Z. H.</creator><creator>Houston, P. A.</creator><creator>Guiney, I.</creator><creator>Humphreys, C. J.</creator><creator>Oliver, R. A.</creator><creator>Wallis, D. J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5053-3380</orcidid><orcidid>https://orcid.org/0000-0003-0029-3993</orcidid><orcidid>https://orcid.org/0000-0002-2088-6166</orcidid><orcidid>https://orcid.org/0000-0001-6907-9317</orcidid><orcidid>https://orcid.org/0000-0002-0787-6713</orcidid><orcidid>https://orcid.org/0000-0002-1198-1372</orcidid></search><sort><creationdate>20180807</creationdate><title>Vertical leakage mechanism in GaN on Si high electron mobility transistor buffer layers</title><author>Choi, F. S. ; Griffiths, J. T. ; Ren, Chris ; Lee, K. B. ; Zaidi, Z. H. ; Houston, P. A. ; Guiney, I. ; Humphreys, C. J. ; Oliver, R. A. ; Wallis, D. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-50290b7c3b9dd5552789bcdd7931470a37add07e8b978428b1c52d2f213fd5973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminum gallium nitrides</topic><topic>Applied physics</topic><topic>Buffer layers</topic><topic>High electron mobility transistors</topic><topic>Leakage</topic><topic>Metalorganic chemical vapor deposition</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Organic chemicals</topic><topic>Organic chemistry</topic><topic>Secondary ion mass spectrometry</topic><topic>Semiconductor devices</topic><topic>Silicon substrates</topic><topic>Transistors</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, F. S.</creatorcontrib><creatorcontrib>Griffiths, J. T.</creatorcontrib><creatorcontrib>Ren, Chris</creatorcontrib><creatorcontrib>Lee, K. B.</creatorcontrib><creatorcontrib>Zaidi, Z. H.</creatorcontrib><creatorcontrib>Houston, P. A.</creatorcontrib><creatorcontrib>Guiney, I.</creatorcontrib><creatorcontrib>Humphreys, C. J.</creatorcontrib><creatorcontrib>Oliver, R. A.</creatorcontrib><creatorcontrib>Wallis, D. J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, F. S.</au><au>Griffiths, J. T.</au><au>Ren, Chris</au><au>Lee, K. B.</au><au>Zaidi, Z. H.</au><au>Houston, P. A.</au><au>Guiney, I.</au><au>Humphreys, C. J.</au><au>Oliver, R. A.</au><au>Wallis, D. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vertical leakage mechanism in GaN on Si high electron mobility transistor buffer layers</atitle><jtitle>Journal of applied physics</jtitle><date>2018-08-07</date><risdate>2018</risdate><volume>124</volume><issue>5</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Control of leakage currents in the buffer layers of GaN based transistors on Si substrates is vital for the demonstration of high performance devices. Here, we show that the growth conditions during the metal organic chemical vapour deposition growth of the graded AlGaN strain relief layers (SRLs) can significantly influence the vertical leakage. Using scanning capacitance microscopy, secondary ion mass spectrometry, and transmission electron microscopy, we investigate the origins of leakage paths and show that they result from the preferential incorporation of oxygen impurities on the side wall facets of the inverted hexagonal pyramidal pits which can occur during the growth of the graded AlGaN SRL. We also show that when 2D growth of the AlGaN SRL is maintained a significant increase in the breakdown voltage can be achieved even in much thinner buffer layer structures. These results demonstrate the importance of controlling the morphology of the high electron mobility transistor buffer layer as even at a very low density the leakage paths identified would provide leakage paths in large area devices.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5027680</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5053-3380</orcidid><orcidid>https://orcid.org/0000-0003-0029-3993</orcidid><orcidid>https://orcid.org/0000-0002-2088-6166</orcidid><orcidid>https://orcid.org/0000-0001-6907-9317</orcidid><orcidid>https://orcid.org/0000-0002-0787-6713</orcidid><orcidid>https://orcid.org/0000-0002-1198-1372</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2018-08, Vol.124 (5)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2086295529
source AIP Journals Complete; Alma/SFX Local Collection
subjects Aluminum gallium nitrides
Applied physics
Buffer layers
High electron mobility transistors
Leakage
Metalorganic chemical vapor deposition
Microscopy
Morphology
Organic chemicals
Organic chemistry
Secondary ion mass spectrometry
Semiconductor devices
Silicon substrates
Transistors
Transmission electron microscopy
title Vertical leakage mechanism in GaN on Si high electron mobility transistor buffer layers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T22%3A33%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vertical%20leakage%20mechanism%20in%20GaN%20on%20Si%20high%20electron%20mobility%20transistor%20buffer%20layers&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Choi,%20F.%20S.&rft.date=2018-08-07&rft.volume=124&rft.issue=5&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5027680&rft_dat=%3Cproquest_scita%3E2086295529%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2086295529&rft_id=info:pmid/&rfr_iscdi=true