Unitary equivalence to a complex symmetric matrix: low dimensions

A matrix \(T \in \M_n(\C)\) is \emph{UECSM} if it is unitarily equivalent to a complex symmetric (i.e., self-transpose) matrix. We develop several techniques for studying this property in dimensions three and four. Among other things, we completely characterize \(4 \times 4\) nilpotent matrices whic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2012-01
Hauptverfasser: Stephan Ramon Garcia, Poore, Daniel E, Tener, James E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Stephan Ramon Garcia
Poore, Daniel E
Tener, James E
description A matrix \(T \in \M_n(\C)\) is \emph{UECSM} if it is unitarily equivalent to a complex symmetric (i.e., self-transpose) matrix. We develop several techniques for studying this property in dimensions three and four. Among other things, we completely characterize \(4 \times 4\) nilpotent matrices which are UECSM and we settle an open problem which has lingered in the \(3 \times 3\) case. We conclude with a discussion concerning a crucial difference which makes dimension three so different from dimensions four and above
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086270040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086270040</sourcerecordid><originalsourceid>FETCH-proquest_journals_20862700403</originalsourceid><addsrcrecordid>eNqNyksKwjAUQNEgCBbtHh44LsSkP5yJKC5AxyXUJ6Tk0-al2u7eDlyAozO4d8USIeUhq3MhNiwl6jjnoqxEUciEnR5ORxVmwGHUb2XQtQjRg4LW297gBDRbizHoFqxamI5g_Aee2qIj7R3t2PqlDGH6c8v218v9fMv64IcRKTadH4NbUiN4XYqK85zL_64vwkU58Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086270040</pqid></control><display><type>article</type><title>Unitary equivalence to a complex symmetric matrix: low dimensions</title><source>Free E- Journals</source><creator>Stephan Ramon Garcia ; Poore, Daniel E ; Tener, James E</creator><creatorcontrib>Stephan Ramon Garcia ; Poore, Daniel E ; Tener, James E</creatorcontrib><description>A matrix \(T \in \M_n(\C)\) is \emph{UECSM} if it is unitarily equivalent to a complex symmetric (i.e., self-transpose) matrix. We develop several techniques for studying this property in dimensions three and four. Among other things, we completely characterize \(4 \times 4\) nilpotent matrices which are UECSM and we settle an open problem which has lingered in the \(3 \times 3\) case. We conclude with a discussion concerning a crucial difference which makes dimension three so different from dimensions four and above</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Equivalence ; Mathematical analysis ; Matrix methods</subject><ispartof>arXiv.org, 2012-01</ispartof><rights>2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Stephan Ramon Garcia</creatorcontrib><creatorcontrib>Poore, Daniel E</creatorcontrib><creatorcontrib>Tener, James E</creatorcontrib><title>Unitary equivalence to a complex symmetric matrix: low dimensions</title><title>arXiv.org</title><description>A matrix \(T \in \M_n(\C)\) is \emph{UECSM} if it is unitarily equivalent to a complex symmetric (i.e., self-transpose) matrix. We develop several techniques for studying this property in dimensions three and four. Among other things, we completely characterize \(4 \times 4\) nilpotent matrices which are UECSM and we settle an open problem which has lingered in the \(3 \times 3\) case. We conclude with a discussion concerning a crucial difference which makes dimension three so different from dimensions four and above</description><subject>Equivalence</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyksKwjAUQNEgCBbtHh44LsSkP5yJKC5AxyXUJ6Tk0-al2u7eDlyAozO4d8USIeUhq3MhNiwl6jjnoqxEUciEnR5ORxVmwGHUb2XQtQjRg4LW297gBDRbizHoFqxamI5g_Aee2qIj7R3t2PqlDGH6c8v218v9fMv64IcRKTadH4NbUiN4XYqK85zL_64vwkU58Q</recordid><startdate>20120126</startdate><enddate>20120126</enddate><creator>Stephan Ramon Garcia</creator><creator>Poore, Daniel E</creator><creator>Tener, James E</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20120126</creationdate><title>Unitary equivalence to a complex symmetric matrix: low dimensions</title><author>Stephan Ramon Garcia ; Poore, Daniel E ; Tener, James E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20862700403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Equivalence</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Stephan Ramon Garcia</creatorcontrib><creatorcontrib>Poore, Daniel E</creatorcontrib><creatorcontrib>Tener, James E</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stephan Ramon Garcia</au><au>Poore, Daniel E</au><au>Tener, James E</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Unitary equivalence to a complex symmetric matrix: low dimensions</atitle><jtitle>arXiv.org</jtitle><date>2012-01-26</date><risdate>2012</risdate><eissn>2331-8422</eissn><abstract>A matrix \(T \in \M_n(\C)\) is \emph{UECSM} if it is unitarily equivalent to a complex symmetric (i.e., self-transpose) matrix. We develop several techniques for studying this property in dimensions three and four. Among other things, we completely characterize \(4 \times 4\) nilpotent matrices which are UECSM and we settle an open problem which has lingered in the \(3 \times 3\) case. We conclude with a discussion concerning a crucial difference which makes dimension three so different from dimensions four and above</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2012-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2086270040
source Free E- Journals
subjects Equivalence
Mathematical analysis
Matrix methods
title Unitary equivalence to a complex symmetric matrix: low dimensions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A53%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Unitary%20equivalence%20to%20a%20complex%20symmetric%20matrix:%20low%20dimensions&rft.jtitle=arXiv.org&rft.au=Stephan%20Ramon%20Garcia&rft.date=2012-01-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086270040%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2086270040&rft_id=info:pmid/&rfr_iscdi=true