Exact solution of the 1D Riemann problem in Newtonian and relativistic hydrodynamics
Some of the most interesting scenarios that can be studied in astrophysics, contain fluids and plasma moving under the influence of strong gravitational fields. To study these problems it is required to implement numerical algorithms robust enough to deal with the equations describing such scenarios...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2013-03 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Lora-Clavijo, F D Cruz-Perez, J P Guzman, F S Gonzalez, J A |
description | Some of the most interesting scenarios that can be studied in astrophysics, contain fluids and plasma moving under the influence of strong gravitational fields. To study these problems it is required to implement numerical algorithms robust enough to deal with the equations describing such scenarios, which usually involve hydrodynamical shocks. It is traditional that the first problem a student willing to develop research in this area is to numerically solve the one dimensional Riemann problem, both Newtonian and relativistic. Even a more basic requirement is the construction of the exact solution to this problem in order to verify that the numerical implementations are correct. We describe in this paper the construction of the exact solution and a detailed procedure of its implementation. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086218740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086218740</sourcerecordid><originalsourceid>FETCH-proquest_journals_20862187403</originalsourceid><addsrcrecordid>eNqNjLsKwjAUQIMgWLT_cMG5kKbPXStODtJdYpvSW9IbTVK1f28HP8DpDOdwViwQSRJHZSrEhoXODZxzkRciy5KA1dVHNh6c0ZNHQ2A68L2C-AhXVKMkgoc1d61GQIKLentDKAkktWCVlh5f6Dw20M-tNe1McsTG7di6k9qp8Mct25-q-nCOltdzUs7fBjNZWtRN8DIXcVmkPPmv-gJqU0CL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086218740</pqid></control><display><type>article</type><title>Exact solution of the 1D Riemann problem in Newtonian and relativistic hydrodynamics</title><source>Free E- Journals</source><creator>Lora-Clavijo, F D ; Cruz-Perez, J P ; Guzman, F S ; Gonzalez, J A</creator><creatorcontrib>Lora-Clavijo, F D ; Cruz-Perez, J P ; Guzman, F S ; Gonzalez, J A</creatorcontrib><description>Some of the most interesting scenarios that can be studied in astrophysics, contain fluids and plasma moving under the influence of strong gravitational fields. To study these problems it is required to implement numerical algorithms robust enough to deal with the equations describing such scenarios, which usually involve hydrodynamical shocks. It is traditional that the first problem a student willing to develop research in this area is to numerically solve the one dimensional Riemann problem, both Newtonian and relativistic. Even a more basic requirement is the construction of the exact solution to this problem in order to verify that the numerical implementations are correct. We describe in this paper the construction of the exact solution and a detailed procedure of its implementation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Astrophysics ; Computational fluid dynamics ; Exact solutions ; Fluid flow ; Gravitational fields ; Hydrodynamics ; Mathematical analysis ; Relativism ; Relativistic effects ; Robustness (mathematics)</subject><ispartof>arXiv.org, 2013-03</ispartof><rights>2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Lora-Clavijo, F D</creatorcontrib><creatorcontrib>Cruz-Perez, J P</creatorcontrib><creatorcontrib>Guzman, F S</creatorcontrib><creatorcontrib>Gonzalez, J A</creatorcontrib><title>Exact solution of the 1D Riemann problem in Newtonian and relativistic hydrodynamics</title><title>arXiv.org</title><description>Some of the most interesting scenarios that can be studied in astrophysics, contain fluids and plasma moving under the influence of strong gravitational fields. To study these problems it is required to implement numerical algorithms robust enough to deal with the equations describing such scenarios, which usually involve hydrodynamical shocks. It is traditional that the first problem a student willing to develop research in this area is to numerically solve the one dimensional Riemann problem, both Newtonian and relativistic. Even a more basic requirement is the construction of the exact solution to this problem in order to verify that the numerical implementations are correct. We describe in this paper the construction of the exact solution and a detailed procedure of its implementation.</description><subject>Algorithms</subject><subject>Astrophysics</subject><subject>Computational fluid dynamics</subject><subject>Exact solutions</subject><subject>Fluid flow</subject><subject>Gravitational fields</subject><subject>Hydrodynamics</subject><subject>Mathematical analysis</subject><subject>Relativism</subject><subject>Relativistic effects</subject><subject>Robustness (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjLsKwjAUQIMgWLT_cMG5kKbPXStODtJdYpvSW9IbTVK1f28HP8DpDOdwViwQSRJHZSrEhoXODZxzkRciy5KA1dVHNh6c0ZNHQ2A68L2C-AhXVKMkgoc1d61GQIKLentDKAkktWCVlh5f6Dw20M-tNe1McsTG7di6k9qp8Mct25-q-nCOltdzUs7fBjNZWtRN8DIXcVmkPPmv-gJqU0CL</recordid><startdate>20130316</startdate><enddate>20130316</enddate><creator>Lora-Clavijo, F D</creator><creator>Cruz-Perez, J P</creator><creator>Guzman, F S</creator><creator>Gonzalez, J A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130316</creationdate><title>Exact solution of the 1D Riemann problem in Newtonian and relativistic hydrodynamics</title><author>Lora-Clavijo, F D ; Cruz-Perez, J P ; Guzman, F S ; Gonzalez, J A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20862187403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Astrophysics</topic><topic>Computational fluid dynamics</topic><topic>Exact solutions</topic><topic>Fluid flow</topic><topic>Gravitational fields</topic><topic>Hydrodynamics</topic><topic>Mathematical analysis</topic><topic>Relativism</topic><topic>Relativistic effects</topic><topic>Robustness (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Lora-Clavijo, F D</creatorcontrib><creatorcontrib>Cruz-Perez, J P</creatorcontrib><creatorcontrib>Guzman, F S</creatorcontrib><creatorcontrib>Gonzalez, J A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lora-Clavijo, F D</au><au>Cruz-Perez, J P</au><au>Guzman, F S</au><au>Gonzalez, J A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Exact solution of the 1D Riemann problem in Newtonian and relativistic hydrodynamics</atitle><jtitle>arXiv.org</jtitle><date>2013-03-16</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>Some of the most interesting scenarios that can be studied in astrophysics, contain fluids and plasma moving under the influence of strong gravitational fields. To study these problems it is required to implement numerical algorithms robust enough to deal with the equations describing such scenarios, which usually involve hydrodynamical shocks. It is traditional that the first problem a student willing to develop research in this area is to numerically solve the one dimensional Riemann problem, both Newtonian and relativistic. Even a more basic requirement is the construction of the exact solution to this problem in order to verify that the numerical implementations are correct. We describe in this paper the construction of the exact solution and a detailed procedure of its implementation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2013-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2086218740 |
source | Free E- Journals |
subjects | Algorithms Astrophysics Computational fluid dynamics Exact solutions Fluid flow Gravitational fields Hydrodynamics Mathematical analysis Relativism Relativistic effects Robustness (mathematics) |
title | Exact solution of the 1D Riemann problem in Newtonian and relativistic hydrodynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T16%3A14%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Exact%20solution%20of%20the%201D%20Riemann%20problem%20in%20Newtonian%20and%20relativistic%20hydrodynamics&rft.jtitle=arXiv.org&rft.au=Lora-Clavijo,%20F%20D&rft.date=2013-03-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086218740%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2086218740&rft_id=info:pmid/&rfr_iscdi=true |