Majority out-dominating functions in digraphs
At least two different notions have been published under the name "majority domination in graphs": Majority dominating functions and majority dominating sets. In this work we extend the former concept to digraphs. Given a digraph \(D=(V,A),\) a function \(f : V \rightarrow \{-1,1\}\) such...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2013-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Manrique, Martín Ebadi, Karam Azami, Akbar |
description | At least two different notions have been published under the name "majority domination in graphs": Majority dominating functions and majority dominating sets. In this work we extend the former concept to digraphs. Given a digraph \(D=(V,A),\) a function \(f : V \rightarrow \{-1,1\}\) such that \(f(N^+[v])\geq1\) for at least half of the vertices \(v\) in \(V\) is a majority out-dominating function (MODF) of \(D.\) The weight of a MODF \(f\) is \(w(f)=\sum\limits_{v\in V}f(v),\) and the minimum weight of a MODF in \(D\) is the majority out-domination number of \(D,\) denoted \(\gamma^+_{maj}(D).\) In this work we introduce these concepts and prove some results regarding them, among which the fact that the decision problem of finding a majority out-dominating function of a given weight is NP-complete. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086199857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086199857</sourcerecordid><originalsourceid>FETCH-proquest_journals_20861998573</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ9U3Myi_KLKlUyC8t0U3Jz83MSyzJzEtXSCvNSy7JzM8rVsjMU0jJTC9KLMgo5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMDCzNDS0sLU3Nj4lQBAAANMqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086199857</pqid></control><display><type>article</type><title>Majority out-dominating functions in digraphs</title><source>Free E- Journals</source><creator>Manrique, Martín ; Ebadi, Karam ; Azami, Akbar</creator><creatorcontrib>Manrique, Martín ; Ebadi, Karam ; Azami, Akbar</creatorcontrib><description>At least two different notions have been published under the name "majority domination in graphs": Majority dominating functions and majority dominating sets. In this work we extend the former concept to digraphs. Given a digraph \(D=(V,A),\) a function \(f : V \rightarrow \{-1,1\}\) such that \(f(N^+[v])\geq1\) for at least half of the vertices \(v\) in \(V\) is a majority out-dominating function (MODF) of \(D.\) The weight of a MODF \(f\) is \(w(f)=\sum\limits_{v\in V}f(v),\) and the minimum weight of a MODF in \(D\) is the majority out-domination number of \(D,\) denoted \(\gamma^+_{maj}(D).\) In this work we introduce these concepts and prove some results regarding them, among which the fact that the decision problem of finding a majority out-dominating function of a given weight is NP-complete.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Apexes ; Graph theory ; Mathematical functions ; Minimum weight</subject><ispartof>arXiv.org, 2013-11</ispartof><rights>2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Manrique, Martín</creatorcontrib><creatorcontrib>Ebadi, Karam</creatorcontrib><creatorcontrib>Azami, Akbar</creatorcontrib><title>Majority out-dominating functions in digraphs</title><title>arXiv.org</title><description>At least two different notions have been published under the name "majority domination in graphs": Majority dominating functions and majority dominating sets. In this work we extend the former concept to digraphs. Given a digraph \(D=(V,A),\) a function \(f : V \rightarrow \{-1,1\}\) such that \(f(N^+[v])\geq1\) for at least half of the vertices \(v\) in \(V\) is a majority out-dominating function (MODF) of \(D.\) The weight of a MODF \(f\) is \(w(f)=\sum\limits_{v\in V}f(v),\) and the minimum weight of a MODF in \(D\) is the majority out-domination number of \(D,\) denoted \(\gamma^+_{maj}(D).\) In this work we introduce these concepts and prove some results regarding them, among which the fact that the decision problem of finding a majority out-dominating function of a given weight is NP-complete.</description><subject>Apexes</subject><subject>Graph theory</subject><subject>Mathematical functions</subject><subject>Minimum weight</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ9U3Myi_KLKlUyC8t0U3Jz83MSyzJzEtXSCvNSy7JzM8rVsjMU0jJTC9KLMgo5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMDCzNDS0sLU3Nj4lQBAAANMqA</recordid><startdate>20131103</startdate><enddate>20131103</enddate><creator>Manrique, Martín</creator><creator>Ebadi, Karam</creator><creator>Azami, Akbar</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20131103</creationdate><title>Majority out-dominating functions in digraphs</title><author>Manrique, Martín ; Ebadi, Karam ; Azami, Akbar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20861998573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Apexes</topic><topic>Graph theory</topic><topic>Mathematical functions</topic><topic>Minimum weight</topic><toplevel>online_resources</toplevel><creatorcontrib>Manrique, Martín</creatorcontrib><creatorcontrib>Ebadi, Karam</creatorcontrib><creatorcontrib>Azami, Akbar</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manrique, Martín</au><au>Ebadi, Karam</au><au>Azami, Akbar</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Majority out-dominating functions in digraphs</atitle><jtitle>arXiv.org</jtitle><date>2013-11-03</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>At least two different notions have been published under the name "majority domination in graphs": Majority dominating functions and majority dominating sets. In this work we extend the former concept to digraphs. Given a digraph \(D=(V,A),\) a function \(f : V \rightarrow \{-1,1\}\) such that \(f(N^+[v])\geq1\) for at least half of the vertices \(v\) in \(V\) is a majority out-dominating function (MODF) of \(D.\) The weight of a MODF \(f\) is \(w(f)=\sum\limits_{v\in V}f(v),\) and the minimum weight of a MODF in \(D\) is the majority out-domination number of \(D,\) denoted \(\gamma^+_{maj}(D).\) In this work we introduce these concepts and prove some results regarding them, among which the fact that the decision problem of finding a majority out-dominating function of a given weight is NP-complete.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2013-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2086199857 |
source | Free E- Journals |
subjects | Apexes Graph theory Mathematical functions Minimum weight |
title | Majority out-dominating functions in digraphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A20%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Majority%20out-dominating%20functions%20in%20digraphs&rft.jtitle=arXiv.org&rft.au=Manrique,%20Mart%C3%ADn&rft.date=2013-11-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086199857%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2086199857&rft_id=info:pmid/&rfr_iscdi=true |