Implicitization of de Jonquières parametrizations

One introduces a class of projective parameterizations that resemble generalized de Jonquières maps. Any such parametrization defines a birational map \(\mathfrak{F}\) of \(\pp^n\) onto a hypersurface \(V(F)\subset \pp^{n+1}\) with a strong handle to implicitization. From this side, the theory here...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2012-05
Hauptverfasser: Seyed Hamid Hassanzadeh, Simis, Aron
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Seyed Hamid Hassanzadeh
Simis, Aron
description One introduces a class of projective parameterizations that resemble generalized de Jonquières maps. Any such parametrization defines a birational map \(\mathfrak{F}\) of \(\pp^n\) onto a hypersurface \(V(F)\subset \pp^{n+1}\) with a strong handle to implicitization. From this side, the theory here developed extends recent work of Ben\ii tez--D'Andrea on monoid parameterizations. The paper deals with both ideal theoretic and effective aspects of the problem. The ring theoretic development gives information on the Castelnuovo--Mumford regularity of the base ideal of \(\mathfrak{F}\). From the effective side, one gives an explicit formula of \(\deg(F)\) involving data from the inverse map of \(\mathfrak{F}\) and show how the present parametrization relates to monoid parameterizations.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086061816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086061816</sourcerecordid><originalsourceid>FETCH-proquest_journals_20860618163</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw8swtyMlMzizJrEosyczPU8hPU0hJVfDKzysszTy8oii1WKEgsSgxN7WkCKqimIeBNS0xpziVF0pzMyi7uYY4e-gWFOUXlqYWl8Rn5ZcW5QGl4o0MLMwMzAwtDM2MiVMFAIW5NVI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086061816</pqid></control><display><type>article</type><title>Implicitization of de Jonquières parametrizations</title><source>Free E- Journals</source><creator>Seyed Hamid Hassanzadeh ; Simis, Aron</creator><creatorcontrib>Seyed Hamid Hassanzadeh ; Simis, Aron</creatorcontrib><description>One introduces a class of projective parameterizations that resemble generalized de Jonquières maps. Any such parametrization defines a birational map \(\mathfrak{F}\) of \(\pp^n\) onto a hypersurface \(V(F)\subset \pp^{n+1}\) with a strong handle to implicitization. From this side, the theory here developed extends recent work of Ben\ii tez--D'Andrea on monoid parameterizations. The paper deals with both ideal theoretic and effective aspects of the problem. The ring theoretic development gives information on the Castelnuovo--Mumford regularity of the base ideal of \(\mathfrak{F}\). From the effective side, one gives an explicit formula of \(\deg(F)\) involving data from the inverse map of \(\mathfrak{F}\) and show how the present parametrization relates to monoid parameterizations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Hyperspaces ; Monoids ; Parameterization</subject><ispartof>arXiv.org, 2012-05</ispartof><rights>2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Seyed Hamid Hassanzadeh</creatorcontrib><creatorcontrib>Simis, Aron</creatorcontrib><title>Implicitization of de Jonquières parametrizations</title><title>arXiv.org</title><description>One introduces a class of projective parameterizations that resemble generalized de Jonquières maps. Any such parametrization defines a birational map \(\mathfrak{F}\) of \(\pp^n\) onto a hypersurface \(V(F)\subset \pp^{n+1}\) with a strong handle to implicitization. From this side, the theory here developed extends recent work of Ben\ii tez--D'Andrea on monoid parameterizations. The paper deals with both ideal theoretic and effective aspects of the problem. The ring theoretic development gives information on the Castelnuovo--Mumford regularity of the base ideal of \(\mathfrak{F}\). From the effective side, one gives an explicit formula of \(\deg(F)\) involving data from the inverse map of \(\mathfrak{F}\) and show how the present parametrization relates to monoid parameterizations.</description><subject>Hyperspaces</subject><subject>Monoids</subject><subject>Parameterization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw8swtyMlMzizJrEosyczPU8hPU0hJVfDKzysszTy8oii1WKEgsSgxN7WkCKqimIeBNS0xpziVF0pzMyi7uYY4e-gWFOUXlqYWl8Rn5ZcW5QGl4o0MLMwMzAwtDM2MiVMFAIW5NVI</recordid><startdate>20120505</startdate><enddate>20120505</enddate><creator>Seyed Hamid Hassanzadeh</creator><creator>Simis, Aron</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20120505</creationdate><title>Implicitization of de Jonquières parametrizations</title><author>Seyed Hamid Hassanzadeh ; Simis, Aron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20860618163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Hyperspaces</topic><topic>Monoids</topic><topic>Parameterization</topic><toplevel>online_resources</toplevel><creatorcontrib>Seyed Hamid Hassanzadeh</creatorcontrib><creatorcontrib>Simis, Aron</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seyed Hamid Hassanzadeh</au><au>Simis, Aron</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Implicitization of de Jonquières parametrizations</atitle><jtitle>arXiv.org</jtitle><date>2012-05-05</date><risdate>2012</risdate><eissn>2331-8422</eissn><abstract>One introduces a class of projective parameterizations that resemble generalized de Jonquières maps. Any such parametrization defines a birational map \(\mathfrak{F}\) of \(\pp^n\) onto a hypersurface \(V(F)\subset \pp^{n+1}\) with a strong handle to implicitization. From this side, the theory here developed extends recent work of Ben\ii tez--D'Andrea on monoid parameterizations. The paper deals with both ideal theoretic and effective aspects of the problem. The ring theoretic development gives information on the Castelnuovo--Mumford regularity of the base ideal of \(\mathfrak{F}\). From the effective side, one gives an explicit formula of \(\deg(F)\) involving data from the inverse map of \(\mathfrak{F}\) and show how the present parametrization relates to monoid parameterizations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2012-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2086061816
source Free E- Journals
subjects Hyperspaces
Monoids
Parameterization
title Implicitization of de Jonquières parametrizations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A47%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Implicitization%20of%20de%20Jonqui%C3%A8res%20parametrizations&rft.jtitle=arXiv.org&rft.au=Seyed%20Hamid%20Hassanzadeh&rft.date=2012-05-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086061816%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2086061816&rft_id=info:pmid/&rfr_iscdi=true