Eikonal equations on ramified spaces

We generalize the results in [16] to higher dimensional ramified spaces. For this purpose we introduce ramified manifolds and, as special cases, locally elementary polygonal ramified spaces (LEP spaces). On LEP spaces we develop a theory of viscosity solutions for Hamilton-Jacobi equations, providin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2012-01
Hauptverfasser: Camilli, Fabio, Schieborn, Dirk, Marchi, Claudio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Camilli, Fabio
Schieborn, Dirk
Marchi, Claudio
description We generalize the results in [16] to higher dimensional ramified spaces. For this purpose we introduce ramified manifolds and, as special cases, locally elementary polygonal ramified spaces (LEP spaces). On LEP spaces we develop a theory of viscosity solutions for Hamilton-Jacobi equations, providing existence and uniqueness results.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086051890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086051890</sourcerecordid><originalsourceid>FETCH-proquest_journals_20860518903</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQcc3Mzs9LzFFILSxNLMnMzytWyM9TKErMzUzLTE1RKC5ITE4t5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFQFOK440MLMwMTA0tLA2MiVMFANbPLrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086051890</pqid></control><display><type>article</type><title>Eikonal equations on ramified spaces</title><source>Free E- Journals</source><creator>Camilli, Fabio ; Schieborn, Dirk ; Marchi, Claudio</creator><creatorcontrib>Camilli, Fabio ; Schieborn, Dirk ; Marchi, Claudio</creatorcontrib><description>We generalize the results in [16] to higher dimensional ramified spaces. For this purpose we introduce ramified manifolds and, as special cases, locally elementary polygonal ramified spaces (LEP spaces). On LEP spaces we develop a theory of viscosity solutions for Hamilton-Jacobi equations, providing existence and uniqueness results.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Mathematical analysis</subject><ispartof>arXiv.org, 2012-01</ispartof><rights>2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Camilli, Fabio</creatorcontrib><creatorcontrib>Schieborn, Dirk</creatorcontrib><creatorcontrib>Marchi, Claudio</creatorcontrib><title>Eikonal equations on ramified spaces</title><title>arXiv.org</title><description>We generalize the results in [16] to higher dimensional ramified spaces. For this purpose we introduce ramified manifolds and, as special cases, locally elementary polygonal ramified spaces (LEP spaces). On LEP spaces we develop a theory of viscosity solutions for Hamilton-Jacobi equations, providing existence and uniqueness results.</description><subject>Mathematical analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQcc3Mzs9LzFFILSxNLMnMzytWyM9TKErMzUzLTE1RKC5ITE4t5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFQFOK440MLMwMTA0tLA2MiVMFANbPLrA</recordid><startdate>20120125</startdate><enddate>20120125</enddate><creator>Camilli, Fabio</creator><creator>Schieborn, Dirk</creator><creator>Marchi, Claudio</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20120125</creationdate><title>Eikonal equations on ramified spaces</title><author>Camilli, Fabio ; Schieborn, Dirk ; Marchi, Claudio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20860518903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Mathematical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Camilli, Fabio</creatorcontrib><creatorcontrib>Schieborn, Dirk</creatorcontrib><creatorcontrib>Marchi, Claudio</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Camilli, Fabio</au><au>Schieborn, Dirk</au><au>Marchi, Claudio</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Eikonal equations on ramified spaces</atitle><jtitle>arXiv.org</jtitle><date>2012-01-25</date><risdate>2012</risdate><eissn>2331-8422</eissn><abstract>We generalize the results in [16] to higher dimensional ramified spaces. For this purpose we introduce ramified manifolds and, as special cases, locally elementary polygonal ramified spaces (LEP spaces). On LEP spaces we develop a theory of viscosity solutions for Hamilton-Jacobi equations, providing existence and uniqueness results.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2012-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2086051890
source Free E- Journals
subjects Mathematical analysis
title Eikonal equations on ramified spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A05%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Eikonal%20equations%20on%20ramified%20spaces&rft.jtitle=arXiv.org&rft.au=Camilli,%20Fabio&rft.date=2012-01-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086051890%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2086051890&rft_id=info:pmid/&rfr_iscdi=true