A fast second-order parareal solver for fractional optimal control problems
The gradient projection technique has recently been used to solve the optimal control problems governed by a fractional diffusion equation. It lies in repeatedly solving the state and co-state equations derived from the optimality conditions, and the Crank–Nicolson (CN) scheme, which gives a second-...
Gespeichert in:
Veröffentlicht in: | Journal of vibration and control 2018-08, Vol.24 (15), p.3418-3433 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3433 |
---|---|
container_issue | 15 |
container_start_page | 3418 |
container_title | Journal of vibration and control |
container_volume | 24 |
creator | Wu, Shu-Lin Huang, Ting-Zhu |
description | The gradient projection technique has recently been used to solve the optimal control problems governed by a fractional diffusion equation. It lies in repeatedly solving the state and co-state equations derived from the optimality conditions, and the Crank–Nicolson (CN) scheme, which gives a second-order numerical solution, is a widely used method to solve these two equations. The goal of this paper is to implement the CN scheme in a parallel-in-time manner in the framework of the parareal algorithm. Because of the stiffness of the approximation matrix of the fractional operator, direct use of the CN scheme results in a convergence factor ρ satisfying
ρ
→
1
as
Δ
x
→
0
for the parareal algorithm, where
Δ
x
denotes the space step-size. Here, we provide a new idea to let the parareal algorithm use the CN scheme as the basic component possessing a constant convergence factor
ρ
≈
1
/
5
, which is independent of
Δ
x
. Numerical results are provided to show the efficiency of the proposed algorithm. |
doi_str_mv | 10.1177/1077546317705557 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2086050266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1077546317705557</sage_id><sourcerecordid>2086050266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-83140b05798d0973b066ae7713b1ad3d96761cb9b72e333c12e970581566d88c3</originalsourceid><addsrcrecordid>eNp1UEtLw0AQXkTBWr17DHhenclmX8dS1IoFL3oOm81GWtJu3E0F_71TIgiCh2Fe3_fNg7FrhFtEre8QtJaVEhSDlFKfsBnqCnlpjTqlmNr82D9nFzlvAaCqEGbseVF0Lo9FDj7uWx5TG1IxuORScH2RY_9JeRfJkvPjJu6pGodxsyNPjDHFvhhSbPqwy5fsrHN9Dlc_fs7eHu5flyu-fnl8Wi7W3AuwIzcCK2hAamtasFo0oJQLWqNo0LWitUor9I1tdBmEEB7LYOkmg1Kp1hgv5uxm0qXBH4eQx3obD4k2y3UJRoGEUilCwYTyKeacQlcPidZOXzVCfXxZ_fdlROETJbv38Cv6L_4bb3BprA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086050266</pqid></control><display><type>article</type><title>A fast second-order parareal solver for fractional optimal control problems</title><source>SAGE Complete A-Z List</source><creator>Wu, Shu-Lin ; Huang, Ting-Zhu</creator><creatorcontrib>Wu, Shu-Lin ; Huang, Ting-Zhu</creatorcontrib><description>The gradient projection technique has recently been used to solve the optimal control problems governed by a fractional diffusion equation. It lies in repeatedly solving the state and co-state equations derived from the optimality conditions, and the Crank–Nicolson (CN) scheme, which gives a second-order numerical solution, is a widely used method to solve these two equations. The goal of this paper is to implement the CN scheme in a parallel-in-time manner in the framework of the parareal algorithm. Because of the stiffness of the approximation matrix of the fractional operator, direct use of the CN scheme results in a convergence factor ρ satisfying
ρ
→
1
as
Δ
x
→
0
for the parareal algorithm, where
Δ
x
denotes the space step-size. Here, we provide a new idea to let the parareal algorithm use the CN scheme as the basic component possessing a constant convergence factor
ρ
≈
1
/
5
, which is independent of
Δ
x
. Numerical results are provided to show the efficiency of the proposed algorithm.</description><identifier>ISSN: 1077-5463</identifier><identifier>EISSN: 1741-2986</identifier><identifier>DOI: 10.1177/1077546317705557</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Basic converters ; Control theory ; Convergence ; Equations of state ; Mathematical analysis ; Nonlinear programming ; Optimal control ; Optimization ; Stiffness</subject><ispartof>Journal of vibration and control, 2018-08, Vol.24 (15), p.3418-3433</ispartof><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-83140b05798d0973b066ae7713b1ad3d96761cb9b72e333c12e970581566d88c3</citedby><cites>FETCH-LOGICAL-c309t-83140b05798d0973b066ae7713b1ad3d96761cb9b72e333c12e970581566d88c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1077546317705557$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1077546317705557$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21799,27903,27904,43600,43601</link.rule.ids></links><search><creatorcontrib>Wu, Shu-Lin</creatorcontrib><creatorcontrib>Huang, Ting-Zhu</creatorcontrib><title>A fast second-order parareal solver for fractional optimal control problems</title><title>Journal of vibration and control</title><description>The gradient projection technique has recently been used to solve the optimal control problems governed by a fractional diffusion equation. It lies in repeatedly solving the state and co-state equations derived from the optimality conditions, and the Crank–Nicolson (CN) scheme, which gives a second-order numerical solution, is a widely used method to solve these two equations. The goal of this paper is to implement the CN scheme in a parallel-in-time manner in the framework of the parareal algorithm. Because of the stiffness of the approximation matrix of the fractional operator, direct use of the CN scheme results in a convergence factor ρ satisfying
ρ
→
1
as
Δ
x
→
0
for the parareal algorithm, where
Δ
x
denotes the space step-size. Here, we provide a new idea to let the parareal algorithm use the CN scheme as the basic component possessing a constant convergence factor
ρ
≈
1
/
5
, which is independent of
Δ
x
. Numerical results are provided to show the efficiency of the proposed algorithm.</description><subject>Algorithms</subject><subject>Basic converters</subject><subject>Control theory</subject><subject>Convergence</subject><subject>Equations of state</subject><subject>Mathematical analysis</subject><subject>Nonlinear programming</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Stiffness</subject><issn>1077-5463</issn><issn>1741-2986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLw0AQXkTBWr17DHhenclmX8dS1IoFL3oOm81GWtJu3E0F_71TIgiCh2Fe3_fNg7FrhFtEre8QtJaVEhSDlFKfsBnqCnlpjTqlmNr82D9nFzlvAaCqEGbseVF0Lo9FDj7uWx5TG1IxuORScH2RY_9JeRfJkvPjJu6pGodxsyNPjDHFvhhSbPqwy5fsrHN9Dlc_fs7eHu5flyu-fnl8Wi7W3AuwIzcCK2hAamtasFo0oJQLWqNo0LWitUor9I1tdBmEEB7LYOkmg1Kp1hgv5uxm0qXBH4eQx3obD4k2y3UJRoGEUilCwYTyKeacQlcPidZOXzVCfXxZ_fdlROETJbv38Cv6L_4bb3BprA</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Wu, Shu-Lin</creator><creator>Huang, Ting-Zhu</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201808</creationdate><title>A fast second-order parareal solver for fractional optimal control problems</title><author>Wu, Shu-Lin ; Huang, Ting-Zhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-83140b05798d0973b066ae7713b1ad3d96761cb9b72e333c12e970581566d88c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Basic converters</topic><topic>Control theory</topic><topic>Convergence</topic><topic>Equations of state</topic><topic>Mathematical analysis</topic><topic>Nonlinear programming</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Stiffness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Shu-Lin</creatorcontrib><creatorcontrib>Huang, Ting-Zhu</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of vibration and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Shu-Lin</au><au>Huang, Ting-Zhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fast second-order parareal solver for fractional optimal control problems</atitle><jtitle>Journal of vibration and control</jtitle><date>2018-08</date><risdate>2018</risdate><volume>24</volume><issue>15</issue><spage>3418</spage><epage>3433</epage><pages>3418-3433</pages><issn>1077-5463</issn><eissn>1741-2986</eissn><abstract>The gradient projection technique has recently been used to solve the optimal control problems governed by a fractional diffusion equation. It lies in repeatedly solving the state and co-state equations derived from the optimality conditions, and the Crank–Nicolson (CN) scheme, which gives a second-order numerical solution, is a widely used method to solve these two equations. The goal of this paper is to implement the CN scheme in a parallel-in-time manner in the framework of the parareal algorithm. Because of the stiffness of the approximation matrix of the fractional operator, direct use of the CN scheme results in a convergence factor ρ satisfying
ρ
→
1
as
Δ
x
→
0
for the parareal algorithm, where
Δ
x
denotes the space step-size. Here, we provide a new idea to let the parareal algorithm use the CN scheme as the basic component possessing a constant convergence factor
ρ
≈
1
/
5
, which is independent of
Δ
x
. Numerical results are provided to show the efficiency of the proposed algorithm.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1077546317705557</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-5463 |
ispartof | Journal of vibration and control, 2018-08, Vol.24 (15), p.3418-3433 |
issn | 1077-5463 1741-2986 |
language | eng |
recordid | cdi_proquest_journals_2086050266 |
source | SAGE Complete A-Z List |
subjects | Algorithms Basic converters Control theory Convergence Equations of state Mathematical analysis Nonlinear programming Optimal control Optimization Stiffness |
title | A fast second-order parareal solver for fractional optimal control problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T08%3A12%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fast%20second-order%20parareal%20solver%20for%20fractional%20optimal%20control%20problems&rft.jtitle=Journal%20of%20vibration%20and%20control&rft.au=Wu,%20Shu-Lin&rft.date=2018-08&rft.volume=24&rft.issue=15&rft.spage=3418&rft.epage=3433&rft.pages=3418-3433&rft.issn=1077-5463&rft.eissn=1741-2986&rft_id=info:doi/10.1177/1077546317705557&rft_dat=%3Cproquest_cross%3E2086050266%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2086050266&rft_id=info:pmid/&rft_sage_id=10.1177_1077546317705557&rfr_iscdi=true |