The Asymptotic Covariance Matrix of the Odds Ratio Parameter Estimator in Semiparametric Log-bilinear Odds Ratio Models
The association between two random variables is often of primary interest in statistical research. In this paper semiparametric models for the association between random vectors X and Y are considered which leave the marginal distributions arbitrary. Given that the odds ratio function comprises the...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2012-04 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Franke, Angelika Osius, Gerhard |
description | The association between two random variables is often of primary interest in statistical research. In this paper semiparametric models for the association between random vectors X and Y are considered which leave the marginal distributions arbitrary. Given that the odds ratio function comprises the whole information about the association the focus is on bilinear log-odds ratio models and in particular on the odds ratio parameter vector {\theta}. The covariance structure of the maximum likelihood estimator {\theta}^ of {\theta} is of major importance for asymptotic inference. To this end different representations of the estimated covariance matrix are derived for conditional and unconditional sampling schemes and different asymptotic approaches depending on whether X and/or Y has finite or arbitrary support. The main result is the invariance of the estimated asymptotic covariance matrix of {\theta}^ with respect to all above approaches. As applications we compute the asymptotic power for tests of linear hypotheses about {\theta} - with emphasis to logistic and linear regression models - which allows to determine the necessary sample size to achieve a wanted power. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086047801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086047801</sourcerecordid><originalsourceid>FETCH-proquest_journals_20860478013</originalsourceid><addsrcrecordid>eNqNjM1qwlAQRi-FQsX6DgNdB25u_Mm2iMWFUlH3MpqxHUky6dxJa9_egC5cuvoW55zvyfVClqVJPgzhxQ1iPHnvw3gSRqOs5_623wTv8b9qTIwPMJVfVMb6QLBEUz6DHME657MoIqzRWGCFihUZKcyicYUmClzDhipurki7p4V8JXsuuSbU-3opBZXx1T0fsYw0uG3fvX3MttN50qj8tBRtd5JW6w7tgs_HfjjJfZo9Zl0A2O9M6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086047801</pqid></control><display><type>article</type><title>The Asymptotic Covariance Matrix of the Odds Ratio Parameter Estimator in Semiparametric Log-bilinear Odds Ratio Models</title><source>Free E- Journals</source><creator>Franke, Angelika ; Osius, Gerhard</creator><creatorcontrib>Franke, Angelika ; Osius, Gerhard</creatorcontrib><description>The association between two random variables is often of primary interest in statistical research. In this paper semiparametric models for the association between random vectors X and Y are considered which leave the marginal distributions arbitrary. Given that the odds ratio function comprises the whole information about the association the focus is on bilinear log-odds ratio models and in particular on the odds ratio parameter vector {\theta}. The covariance structure of the maximum likelihood estimator {\theta}^ of {\theta} is of major importance for asymptotic inference. To this end different representations of the estimated covariance matrix are derived for conditional and unconditional sampling schemes and different asymptotic approaches depending on whether X and/or Y has finite or arbitrary support. The main result is the invariance of the estimated asymptotic covariance matrix of {\theta}^ with respect to all above approaches. As applications we compute the asymptotic power for tests of linear hypotheses about {\theta} - with emphasis to logistic and linear regression models - which allows to determine the necessary sample size to achieve a wanted power.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymptotic properties ; Covariance matrix ; Economic models ; Maximum likelihood estimators ; Parameter estimation ; Random variables ; Regression analysis ; Regression models ; Statistical analysis</subject><ispartof>arXiv.org, 2012-04</ispartof><rights>2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Franke, Angelika</creatorcontrib><creatorcontrib>Osius, Gerhard</creatorcontrib><title>The Asymptotic Covariance Matrix of the Odds Ratio Parameter Estimator in Semiparametric Log-bilinear Odds Ratio Models</title><title>arXiv.org</title><description>The association between two random variables is often of primary interest in statistical research. In this paper semiparametric models for the association between random vectors X and Y are considered which leave the marginal distributions arbitrary. Given that the odds ratio function comprises the whole information about the association the focus is on bilinear log-odds ratio models and in particular on the odds ratio parameter vector {\theta}. The covariance structure of the maximum likelihood estimator {\theta}^ of {\theta} is of major importance for asymptotic inference. To this end different representations of the estimated covariance matrix are derived for conditional and unconditional sampling schemes and different asymptotic approaches depending on whether X and/or Y has finite or arbitrary support. The main result is the invariance of the estimated asymptotic covariance matrix of {\theta}^ with respect to all above approaches. As applications we compute the asymptotic power for tests of linear hypotheses about {\theta} - with emphasis to logistic and linear regression models - which allows to determine the necessary sample size to achieve a wanted power.</description><subject>Asymptotic properties</subject><subject>Covariance matrix</subject><subject>Economic models</subject><subject>Maximum likelihood estimators</subject><subject>Parameter estimation</subject><subject>Random variables</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Statistical analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjM1qwlAQRi-FQsX6DgNdB25u_Mm2iMWFUlH3MpqxHUky6dxJa9_egC5cuvoW55zvyfVClqVJPgzhxQ1iPHnvw3gSRqOs5_623wTv8b9qTIwPMJVfVMb6QLBEUz6DHME657MoIqzRWGCFihUZKcyicYUmClzDhipurki7p4V8JXsuuSbU-3opBZXx1T0fsYw0uG3fvX3MttN50qj8tBRtd5JW6w7tgs_HfjjJfZo9Zl0A2O9M6Q</recordid><startdate>20120413</startdate><enddate>20120413</enddate><creator>Franke, Angelika</creator><creator>Osius, Gerhard</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20120413</creationdate><title>The Asymptotic Covariance Matrix of the Odds Ratio Parameter Estimator in Semiparametric Log-bilinear Odds Ratio Models</title><author>Franke, Angelika ; Osius, Gerhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20860478013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Asymptotic properties</topic><topic>Covariance matrix</topic><topic>Economic models</topic><topic>Maximum likelihood estimators</topic><topic>Parameter estimation</topic><topic>Random variables</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Statistical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Franke, Angelika</creatorcontrib><creatorcontrib>Osius, Gerhard</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franke, Angelika</au><au>Osius, Gerhard</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The Asymptotic Covariance Matrix of the Odds Ratio Parameter Estimator in Semiparametric Log-bilinear Odds Ratio Models</atitle><jtitle>arXiv.org</jtitle><date>2012-04-13</date><risdate>2012</risdate><eissn>2331-8422</eissn><abstract>The association between two random variables is often of primary interest in statistical research. In this paper semiparametric models for the association between random vectors X and Y are considered which leave the marginal distributions arbitrary. Given that the odds ratio function comprises the whole information about the association the focus is on bilinear log-odds ratio models and in particular on the odds ratio parameter vector {\theta}. The covariance structure of the maximum likelihood estimator {\theta}^ of {\theta} is of major importance for asymptotic inference. To this end different representations of the estimated covariance matrix are derived for conditional and unconditional sampling schemes and different asymptotic approaches depending on whether X and/or Y has finite or arbitrary support. The main result is the invariance of the estimated asymptotic covariance matrix of {\theta}^ with respect to all above approaches. As applications we compute the asymptotic power for tests of linear hypotheses about {\theta} - with emphasis to logistic and linear regression models - which allows to determine the necessary sample size to achieve a wanted power.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2012-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2086047801 |
source | Free E- Journals |
subjects | Asymptotic properties Covariance matrix Economic models Maximum likelihood estimators Parameter estimation Random variables Regression analysis Regression models Statistical analysis |
title | The Asymptotic Covariance Matrix of the Odds Ratio Parameter Estimator in Semiparametric Log-bilinear Odds Ratio Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T06%3A53%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20Asymptotic%20Covariance%20Matrix%20of%20the%20Odds%20Ratio%20Parameter%20Estimator%20in%20Semiparametric%20Log-bilinear%20Odds%20Ratio%20Models&rft.jtitle=arXiv.org&rft.au=Franke,%20Angelika&rft.date=2012-04-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086047801%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2086047801&rft_id=info:pmid/&rfr_iscdi=true |