The Asymptotic Covariance Matrix of the Odds Ratio Parameter Estimator in Semiparametric Log-bilinear Odds Ratio Models

The association between two random variables is often of primary interest in statistical research. In this paper semiparametric models for the association between random vectors X and Y are considered which leave the marginal distributions arbitrary. Given that the odds ratio function comprises the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2012-04
Hauptverfasser: Franke, Angelika, Osius, Gerhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Franke, Angelika
Osius, Gerhard
description The association between two random variables is often of primary interest in statistical research. In this paper semiparametric models for the association between random vectors X and Y are considered which leave the marginal distributions arbitrary. Given that the odds ratio function comprises the whole information about the association the focus is on bilinear log-odds ratio models and in particular on the odds ratio parameter vector {\theta}. The covariance structure of the maximum likelihood estimator {\theta}^ of {\theta} is of major importance for asymptotic inference. To this end different representations of the estimated covariance matrix are derived for conditional and unconditional sampling schemes and different asymptotic approaches depending on whether X and/or Y has finite or arbitrary support. The main result is the invariance of the estimated asymptotic covariance matrix of {\theta}^ with respect to all above approaches. As applications we compute the asymptotic power for tests of linear hypotheses about {\theta} - with emphasis to logistic and linear regression models - which allows to determine the necessary sample size to achieve a wanted power.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086047801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086047801</sourcerecordid><originalsourceid>FETCH-proquest_journals_20860478013</originalsourceid><addsrcrecordid>eNqNjM1qwlAQRi-FQsX6DgNdB25u_Mm2iMWFUlH3MpqxHUky6dxJa9_egC5cuvoW55zvyfVClqVJPgzhxQ1iPHnvw3gSRqOs5_623wTv8b9qTIwPMJVfVMb6QLBEUz6DHME657MoIqzRWGCFihUZKcyicYUmClzDhipurki7p4V8JXsuuSbU-3opBZXx1T0fsYw0uG3fvX3MttN50qj8tBRtd5JW6w7tgs_HfjjJfZo9Zl0A2O9M6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086047801</pqid></control><display><type>article</type><title>The Asymptotic Covariance Matrix of the Odds Ratio Parameter Estimator in Semiparametric Log-bilinear Odds Ratio Models</title><source>Free E- Journals</source><creator>Franke, Angelika ; Osius, Gerhard</creator><creatorcontrib>Franke, Angelika ; Osius, Gerhard</creatorcontrib><description>The association between two random variables is often of primary interest in statistical research. In this paper semiparametric models for the association between random vectors X and Y are considered which leave the marginal distributions arbitrary. Given that the odds ratio function comprises the whole information about the association the focus is on bilinear log-odds ratio models and in particular on the odds ratio parameter vector {\theta}. The covariance structure of the maximum likelihood estimator {\theta}^ of {\theta} is of major importance for asymptotic inference. To this end different representations of the estimated covariance matrix are derived for conditional and unconditional sampling schemes and different asymptotic approaches depending on whether X and/or Y has finite or arbitrary support. The main result is the invariance of the estimated asymptotic covariance matrix of {\theta}^ with respect to all above approaches. As applications we compute the asymptotic power for tests of linear hypotheses about {\theta} - with emphasis to logistic and linear regression models - which allows to determine the necessary sample size to achieve a wanted power.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymptotic properties ; Covariance matrix ; Economic models ; Maximum likelihood estimators ; Parameter estimation ; Random variables ; Regression analysis ; Regression models ; Statistical analysis</subject><ispartof>arXiv.org, 2012-04</ispartof><rights>2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Franke, Angelika</creatorcontrib><creatorcontrib>Osius, Gerhard</creatorcontrib><title>The Asymptotic Covariance Matrix of the Odds Ratio Parameter Estimator in Semiparametric Log-bilinear Odds Ratio Models</title><title>arXiv.org</title><description>The association between two random variables is often of primary interest in statistical research. In this paper semiparametric models for the association between random vectors X and Y are considered which leave the marginal distributions arbitrary. Given that the odds ratio function comprises the whole information about the association the focus is on bilinear log-odds ratio models and in particular on the odds ratio parameter vector {\theta}. The covariance structure of the maximum likelihood estimator {\theta}^ of {\theta} is of major importance for asymptotic inference. To this end different representations of the estimated covariance matrix are derived for conditional and unconditional sampling schemes and different asymptotic approaches depending on whether X and/or Y has finite or arbitrary support. The main result is the invariance of the estimated asymptotic covariance matrix of {\theta}^ with respect to all above approaches. As applications we compute the asymptotic power for tests of linear hypotheses about {\theta} - with emphasis to logistic and linear regression models - which allows to determine the necessary sample size to achieve a wanted power.</description><subject>Asymptotic properties</subject><subject>Covariance matrix</subject><subject>Economic models</subject><subject>Maximum likelihood estimators</subject><subject>Parameter estimation</subject><subject>Random variables</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Statistical analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjM1qwlAQRi-FQsX6DgNdB25u_Mm2iMWFUlH3MpqxHUky6dxJa9_egC5cuvoW55zvyfVClqVJPgzhxQ1iPHnvw3gSRqOs5_623wTv8b9qTIwPMJVfVMb6QLBEUz6DHME657MoIqzRWGCFihUZKcyicYUmClzDhipurki7p4V8JXsuuSbU-3opBZXx1T0fsYw0uG3fvX3MttN50qj8tBRtd5JW6w7tgs_HfjjJfZo9Zl0A2O9M6Q</recordid><startdate>20120413</startdate><enddate>20120413</enddate><creator>Franke, Angelika</creator><creator>Osius, Gerhard</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20120413</creationdate><title>The Asymptotic Covariance Matrix of the Odds Ratio Parameter Estimator in Semiparametric Log-bilinear Odds Ratio Models</title><author>Franke, Angelika ; Osius, Gerhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20860478013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Asymptotic properties</topic><topic>Covariance matrix</topic><topic>Economic models</topic><topic>Maximum likelihood estimators</topic><topic>Parameter estimation</topic><topic>Random variables</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Statistical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Franke, Angelika</creatorcontrib><creatorcontrib>Osius, Gerhard</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franke, Angelika</au><au>Osius, Gerhard</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The Asymptotic Covariance Matrix of the Odds Ratio Parameter Estimator in Semiparametric Log-bilinear Odds Ratio Models</atitle><jtitle>arXiv.org</jtitle><date>2012-04-13</date><risdate>2012</risdate><eissn>2331-8422</eissn><abstract>The association between two random variables is often of primary interest in statistical research. In this paper semiparametric models for the association between random vectors X and Y are considered which leave the marginal distributions arbitrary. Given that the odds ratio function comprises the whole information about the association the focus is on bilinear log-odds ratio models and in particular on the odds ratio parameter vector {\theta}. The covariance structure of the maximum likelihood estimator {\theta}^ of {\theta} is of major importance for asymptotic inference. To this end different representations of the estimated covariance matrix are derived for conditional and unconditional sampling schemes and different asymptotic approaches depending on whether X and/or Y has finite or arbitrary support. The main result is the invariance of the estimated asymptotic covariance matrix of {\theta}^ with respect to all above approaches. As applications we compute the asymptotic power for tests of linear hypotheses about {\theta} - with emphasis to logistic and linear regression models - which allows to determine the necessary sample size to achieve a wanted power.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2012-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2086047801
source Free E- Journals
subjects Asymptotic properties
Covariance matrix
Economic models
Maximum likelihood estimators
Parameter estimation
Random variables
Regression analysis
Regression models
Statistical analysis
title The Asymptotic Covariance Matrix of the Odds Ratio Parameter Estimator in Semiparametric Log-bilinear Odds Ratio Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T06%3A53%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20Asymptotic%20Covariance%20Matrix%20of%20the%20Odds%20Ratio%20Parameter%20Estimator%20in%20Semiparametric%20Log-bilinear%20Odds%20Ratio%20Models&rft.jtitle=arXiv.org&rft.au=Franke,%20Angelika&rft.date=2012-04-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086047801%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2086047801&rft_id=info:pmid/&rfr_iscdi=true