Continued fractions and transcendental numbers

It is widely believed that the continued fraction expansion of every irrational algebraic number \(\alpha\) either is eventually periodic (and we know that this is the case if and only if \(\alpha\) is a quadratic irrational), or it contains arbitrarily large partial quotients. Apparently, this ques...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2005-11
Hauptverfasser: Adamczewski, Boris, Bugeaud, Yann, Davison, Les J L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Adamczewski, Boris
Bugeaud, Yann
Davison, Les J L
description It is widely believed that the continued fraction expansion of every irrational algebraic number \(\alpha\) either is eventually periodic (and we know that this is the case if and only if \(\alpha\) is a quadratic irrational), or it contains arbitrarily large partial quotients. Apparently, this question was first considered by Khintchine. A preliminary step towards its resolution consists in providing explicit examples of transcendental continued fractions. The main purpose of the present work is to present new families of transcendental continued fractions with bounded partial quotients. Our results are derived thanks to new combinatorial transcendence criteria recently obtained by Adamczewski and Bugeaud.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086035544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086035544</sourcerecordid><originalsourceid>FETCH-proquest_journals_20860355443</originalsourceid><addsrcrecordid>eNqNykEOgjAQQNHGxESi3KGJa0ydtsCeaDyAe1LpkEBgKp32_rrwAK7-4v2dKEDra9UagIMomWelFNQNWKsLcekCpYkyejlGN6QpEEtHXqboiAckj5TcIimvL4x8EvvRLYzlr0dxvt-e3aN6x7Bl5NTPIUf6Ug-qrZW21hj93_UBPZEy9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086035544</pqid></control><display><type>article</type><title>Continued fractions and transcendental numbers</title><source>Free E- Journals</source><creator>Adamczewski, Boris ; Bugeaud, Yann ; Davison, Les J L</creator><creatorcontrib>Adamczewski, Boris ; Bugeaud, Yann ; Davison, Les J L</creatorcontrib><description>It is widely believed that the continued fraction expansion of every irrational algebraic number \(\alpha\) either is eventually periodic (and we know that this is the case if and only if \(\alpha\) is a quadratic irrational), or it contains arbitrarily large partial quotients. Apparently, this question was first considered by Khintchine. A preliminary step towards its resolution consists in providing explicit examples of transcendental continued fractions. The main purpose of the present work is to present new families of transcendental continued fractions with bounded partial quotients. Our results are derived thanks to new combinatorial transcendence criteria recently obtained by Adamczewski and Bugeaud.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Combinatorial analysis ; Quotients</subject><ispartof>arXiv.org, 2005-11</ispartof><rights>Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at http://arxiv.org/abs/math/0511682.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Adamczewski, Boris</creatorcontrib><creatorcontrib>Bugeaud, Yann</creatorcontrib><creatorcontrib>Davison, Les J L</creatorcontrib><title>Continued fractions and transcendental numbers</title><title>arXiv.org</title><description>It is widely believed that the continued fraction expansion of every irrational algebraic number \(\alpha\) either is eventually periodic (and we know that this is the case if and only if \(\alpha\) is a quadratic irrational), or it contains arbitrarily large partial quotients. Apparently, this question was first considered by Khintchine. A preliminary step towards its resolution consists in providing explicit examples of transcendental continued fractions. The main purpose of the present work is to present new families of transcendental continued fractions with bounded partial quotients. Our results are derived thanks to new combinatorial transcendence criteria recently obtained by Adamczewski and Bugeaud.</description><subject>Combinatorial analysis</subject><subject>Quotients</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNykEOgjAQQNHGxESi3KGJa0ydtsCeaDyAe1LpkEBgKp32_rrwAK7-4v2dKEDra9UagIMomWelFNQNWKsLcekCpYkyejlGN6QpEEtHXqboiAckj5TcIimvL4x8EvvRLYzlr0dxvt-e3aN6x7Bl5NTPIUf6Ug-qrZW21hj93_UBPZEy9A</recordid><startdate>20051128</startdate><enddate>20051128</enddate><creator>Adamczewski, Boris</creator><creator>Bugeaud, Yann</creator><creator>Davison, Les J L</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20051128</creationdate><title>Continued fractions and transcendental numbers</title><author>Adamczewski, Boris ; Bugeaud, Yann ; Davison, Les J L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20860355443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Combinatorial analysis</topic><topic>Quotients</topic><toplevel>online_resources</toplevel><creatorcontrib>Adamczewski, Boris</creatorcontrib><creatorcontrib>Bugeaud, Yann</creatorcontrib><creatorcontrib>Davison, Les J L</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adamczewski, Boris</au><au>Bugeaud, Yann</au><au>Davison, Les J L</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Continued fractions and transcendental numbers</atitle><jtitle>arXiv.org</jtitle><date>2005-11-28</date><risdate>2005</risdate><eissn>2331-8422</eissn><abstract>It is widely believed that the continued fraction expansion of every irrational algebraic number \(\alpha\) either is eventually periodic (and we know that this is the case if and only if \(\alpha\) is a quadratic irrational), or it contains arbitrarily large partial quotients. Apparently, this question was first considered by Khintchine. A preliminary step towards its resolution consists in providing explicit examples of transcendental continued fractions. The main purpose of the present work is to present new families of transcendental continued fractions with bounded partial quotients. Our results are derived thanks to new combinatorial transcendence criteria recently obtained by Adamczewski and Bugeaud.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2005-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2086035544
source Free E- Journals
subjects Combinatorial analysis
Quotients
title Continued fractions and transcendental numbers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T04%3A13%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Continued%20fractions%20and%20transcendental%20numbers&rft.jtitle=arXiv.org&rft.au=Adamczewski,%20Boris&rft.date=2005-11-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086035544%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2086035544&rft_id=info:pmid/&rfr_iscdi=true