A descent theorem for formal smoothness
Let u be a local homomorphism of noetherian local rings forming part of a commutative square vf=gu. We give some conditions on the square which imply that u is formally smooth. This result encapsulates a variety of (apparently unrelated) results in commutative algebra greatly improving some of them:...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-06 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Majadas, Javier |
description | Let u be a local homomorphism of noetherian local rings forming part of a commutative square vf=gu. We give some conditions on the square which imply that u is formally smooth. This result encapsulates a variety of (apparently unrelated) results in commutative algebra greatly improving some of them: Greco's theorem on descent of quasi-excellence property by finite surjective morphisms, Kunz's characterization of regular local rings in positive characteristic by means of the Frobenius homomorphism (and in fact the relative version obtained by Andre and Radu), etc. In the second part of the paper, we study a similar question for the complete intersection property instead of formal smoothness, giving also some applications. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086034701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086034701</sourcerecordid><originalsourceid>FETCH-proquest_journals_20860347013</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQd1RISS1OTs0rUSjJSM0vSs1VSMsvAuHcxByF4tz8_JKMvNTiYh4G1rTEnOJUXijNzaDs5hri7KFbUJRfWJpaXBKflV9alAeUijcysDAzMDYxNzA0Jk4VAG3uL8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086034701</pqid></control><display><type>article</type><title>A descent theorem for formal smoothness</title><source>Free E- Journals</source><creator>Majadas, Javier</creator><creatorcontrib>Majadas, Javier</creatorcontrib><description>Let u be a local homomorphism of noetherian local rings forming part of a commutative square vf=gu. We give some conditions on the square which imply that u is formally smooth. This result encapsulates a variety of (apparently unrelated) results in commutative algebra greatly improving some of them: Greco's theorem on descent of quasi-excellence property by finite surjective morphisms, Kunz's characterization of regular local rings in positive characteristic by means of the Frobenius homomorphism (and in fact the relative version obtained by Andre and Radu), etc. In the second part of the paper, we study a similar question for the complete intersection property instead of formal smoothness, giving also some applications.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Descent ; Homomorphisms ; Rings (mathematics) ; Smoothness ; Theorems</subject><ispartof>arXiv.org, 2019-06</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Majadas, Javier</creatorcontrib><title>A descent theorem for formal smoothness</title><title>arXiv.org</title><description>Let u be a local homomorphism of noetherian local rings forming part of a commutative square vf=gu. We give some conditions on the square which imply that u is formally smooth. This result encapsulates a variety of (apparently unrelated) results in commutative algebra greatly improving some of them: Greco's theorem on descent of quasi-excellence property by finite surjective morphisms, Kunz's characterization of regular local rings in positive characteristic by means of the Frobenius homomorphism (and in fact the relative version obtained by Andre and Radu), etc. In the second part of the paper, we study a similar question for the complete intersection property instead of formal smoothness, giving also some applications.</description><subject>Descent</subject><subject>Homomorphisms</subject><subject>Rings (mathematics)</subject><subject>Smoothness</subject><subject>Theorems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQd1RISS1OTs0rUSjJSM0vSs1VSMsvAuHcxByF4tz8_JKMvNTiYh4G1rTEnOJUXijNzaDs5hri7KFbUJRfWJpaXBKflV9alAeUijcysDAzMDYxNzA0Jk4VAG3uL8A</recordid><startdate>20190618</startdate><enddate>20190618</enddate><creator>Majadas, Javier</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190618</creationdate><title>A descent theorem for formal smoothness</title><author>Majadas, Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20860347013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Descent</topic><topic>Homomorphisms</topic><topic>Rings (mathematics)</topic><topic>Smoothness</topic><topic>Theorems</topic><toplevel>online_resources</toplevel><creatorcontrib>Majadas, Javier</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Majadas, Javier</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A descent theorem for formal smoothness</atitle><jtitle>arXiv.org</jtitle><date>2019-06-18</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Let u be a local homomorphism of noetherian local rings forming part of a commutative square vf=gu. We give some conditions on the square which imply that u is formally smooth. This result encapsulates a variety of (apparently unrelated) results in commutative algebra greatly improving some of them: Greco's theorem on descent of quasi-excellence property by finite surjective morphisms, Kunz's characterization of regular local rings in positive characteristic by means of the Frobenius homomorphism (and in fact the relative version obtained by Andre and Radu), etc. In the second part of the paper, we study a similar question for the complete intersection property instead of formal smoothness, giving also some applications.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2086034701 |
source | Free E- Journals |
subjects | Descent Homomorphisms Rings (mathematics) Smoothness Theorems |
title | A descent theorem for formal smoothness |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A49%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20descent%20theorem%20for%20formal%20smoothness&rft.jtitle=arXiv.org&rft.au=Majadas,%20Javier&rft.date=2019-06-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086034701%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2086034701&rft_id=info:pmid/&rfr_iscdi=true |