Rate-dependent morphology of Li2O2 growth in Li-O2 batteries
Compact solid discharge products enable energy storage devices with high gravimetric and volumetric energy densities, but solid deposits on active surfaces can disturb charge transport and induce mechanical stress. In this Letter we develop a nanoscale continuum model for the growth of Li2O2 crystal...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2013-07 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Horstmann, B Gallant, B Mitchell, R Bessler, W G Shao-Horn, Y Bazant, M Z |
description | Compact solid discharge products enable energy storage devices with high gravimetric and volumetric energy densities, but solid deposits on active surfaces can disturb charge transport and induce mechanical stress. In this Letter we develop a nanoscale continuum model for the growth of Li2O2 crystals in lithium-oxygen batteries with organic electrolytes, based on a theory of electrochemical non-equilibrium thermodynamics originally applied to Li-ion batteries. As in the case of lithium insertion in phase-separating LiFePO4 nanoparticles, the theory predicts a transition from complex to uniform morphologies of Li2O2 with increasing current. Discrete particle growth at low discharge rates becomes suppressed at high rates, resulting in a film of electronically insulating Li2O2 that limits cell performance. We predict that the transition between these surface growth modes occurs at current densities close to the exchange current density of the cathode reaction, consistent with experimental observations. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085929876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085929876</sourcerecordid><originalsourceid>FETCH-proquest_journals_20859298763</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3CLgOxBf7A3eiuBAEcV9a-vqj5sUkRby9WXgAV8Mws2ARKLUT-R5gxWLnRiklpBkkiYrY4V55FA0a1A1qz59kTU8TdR9OLb8OcAPeWXr7ng86uAheV96jHdBt2LKtJofxj2u2PZ8ex4swll4zOl-ONFsdUgkyTwoo8ixV_11fzjk2pg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085929876</pqid></control><display><type>article</type><title>Rate-dependent morphology of Li2O2 growth in Li-O2 batteries</title><source>Free E- Journals</source><creator>Horstmann, B ; Gallant, B ; Mitchell, R ; Bessler, W G ; Shao-Horn, Y ; Bazant, M Z</creator><creatorcontrib>Horstmann, B ; Gallant, B ; Mitchell, R ; Bessler, W G ; Shao-Horn, Y ; Bazant, M Z</creatorcontrib><description>Compact solid discharge products enable energy storage devices with high gravimetric and volumetric energy densities, but solid deposits on active surfaces can disturb charge transport and induce mechanical stress. In this Letter we develop a nanoscale continuum model for the growth of Li2O2 crystals in lithium-oxygen batteries with organic electrolytes, based on a theory of electrochemical non-equilibrium thermodynamics originally applied to Li-ion batteries. As in the case of lithium insertion in phase-separating LiFePO4 nanoparticles, the theory predicts a transition from complex to uniform morphologies of Li2O2 with increasing current. Discrete particle growth at low discharge rates becomes suppressed at high rates, resulting in a film of electronically insulating Li2O2 that limits cell performance. We predict that the transition between these surface growth modes occurs at current densities close to the exchange current density of the cathode reaction, consistent with experimental observations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Charge transport ; Continuum modeling ; Crystal growth ; Current density ; Discharge ; Energy storage ; Gravimetry ; Lithium ; Lithium batteries ; Lithium-ion batteries ; Metal air batteries ; Morphology ; Nanoparticles ; Nonaqueous electrolytes ; Nonequilibrium thermodynamics ; Rechargeable batteries ; Storage batteries ; Thermodynamic equilibrium</subject><ispartof>arXiv.org, 2013-07</ispartof><rights>2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Horstmann, B</creatorcontrib><creatorcontrib>Gallant, B</creatorcontrib><creatorcontrib>Mitchell, R</creatorcontrib><creatorcontrib>Bessler, W G</creatorcontrib><creatorcontrib>Shao-Horn, Y</creatorcontrib><creatorcontrib>Bazant, M Z</creatorcontrib><title>Rate-dependent morphology of Li2O2 growth in Li-O2 batteries</title><title>arXiv.org</title><description>Compact solid discharge products enable energy storage devices with high gravimetric and volumetric energy densities, but solid deposits on active surfaces can disturb charge transport and induce mechanical stress. In this Letter we develop a nanoscale continuum model for the growth of Li2O2 crystals in lithium-oxygen batteries with organic electrolytes, based on a theory of electrochemical non-equilibrium thermodynamics originally applied to Li-ion batteries. As in the case of lithium insertion in phase-separating LiFePO4 nanoparticles, the theory predicts a transition from complex to uniform morphologies of Li2O2 with increasing current. Discrete particle growth at low discharge rates becomes suppressed at high rates, resulting in a film of electronically insulating Li2O2 that limits cell performance. We predict that the transition between these surface growth modes occurs at current densities close to the exchange current density of the cathode reaction, consistent with experimental observations.</description><subject>Charge transport</subject><subject>Continuum modeling</subject><subject>Crystal growth</subject><subject>Current density</subject><subject>Discharge</subject><subject>Energy storage</subject><subject>Gravimetry</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Lithium-ion batteries</subject><subject>Metal air batteries</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Nonaqueous electrolytes</subject><subject>Nonequilibrium thermodynamics</subject><subject>Rechargeable batteries</subject><subject>Storage batteries</subject><subject>Thermodynamic equilibrium</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiksKwjAUAIMgWLR3CLgOxBf7A3eiuBAEcV9a-vqj5sUkRby9WXgAV8Mws2ARKLUT-R5gxWLnRiklpBkkiYrY4V55FA0a1A1qz59kTU8TdR9OLb8OcAPeWXr7ng86uAheV96jHdBt2LKtJofxj2u2PZ8ex4swll4zOl-ONFsdUgkyTwoo8ixV_11fzjk2pg</recordid><startdate>20130725</startdate><enddate>20130725</enddate><creator>Horstmann, B</creator><creator>Gallant, B</creator><creator>Mitchell, R</creator><creator>Bessler, W G</creator><creator>Shao-Horn, Y</creator><creator>Bazant, M Z</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130725</creationdate><title>Rate-dependent morphology of Li2O2 growth in Li-O2 batteries</title><author>Horstmann, B ; Gallant, B ; Mitchell, R ; Bessler, W G ; Shao-Horn, Y ; Bazant, M Z</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20859298763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Charge transport</topic><topic>Continuum modeling</topic><topic>Crystal growth</topic><topic>Current density</topic><topic>Discharge</topic><topic>Energy storage</topic><topic>Gravimetry</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Lithium-ion batteries</topic><topic>Metal air batteries</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Nonaqueous electrolytes</topic><topic>Nonequilibrium thermodynamics</topic><topic>Rechargeable batteries</topic><topic>Storage batteries</topic><topic>Thermodynamic equilibrium</topic><toplevel>online_resources</toplevel><creatorcontrib>Horstmann, B</creatorcontrib><creatorcontrib>Gallant, B</creatorcontrib><creatorcontrib>Mitchell, R</creatorcontrib><creatorcontrib>Bessler, W G</creatorcontrib><creatorcontrib>Shao-Horn, Y</creatorcontrib><creatorcontrib>Bazant, M Z</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horstmann, B</au><au>Gallant, B</au><au>Mitchell, R</au><au>Bessler, W G</au><au>Shao-Horn, Y</au><au>Bazant, M Z</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Rate-dependent morphology of Li2O2 growth in Li-O2 batteries</atitle><jtitle>arXiv.org</jtitle><date>2013-07-25</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>Compact solid discharge products enable energy storage devices with high gravimetric and volumetric energy densities, but solid deposits on active surfaces can disturb charge transport and induce mechanical stress. In this Letter we develop a nanoscale continuum model for the growth of Li2O2 crystals in lithium-oxygen batteries with organic electrolytes, based on a theory of electrochemical non-equilibrium thermodynamics originally applied to Li-ion batteries. As in the case of lithium insertion in phase-separating LiFePO4 nanoparticles, the theory predicts a transition from complex to uniform morphologies of Li2O2 with increasing current. Discrete particle growth at low discharge rates becomes suppressed at high rates, resulting in a film of electronically insulating Li2O2 that limits cell performance. We predict that the transition between these surface growth modes occurs at current densities close to the exchange current density of the cathode reaction, consistent with experimental observations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2013-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2085929876 |
source | Free E- Journals |
subjects | Charge transport Continuum modeling Crystal growth Current density Discharge Energy storage Gravimetry Lithium Lithium batteries Lithium-ion batteries Metal air batteries Morphology Nanoparticles Nonaqueous electrolytes Nonequilibrium thermodynamics Rechargeable batteries Storage batteries Thermodynamic equilibrium |
title | Rate-dependent morphology of Li2O2 growth in Li-O2 batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A55%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Rate-dependent%20morphology%20of%20Li2O2%20growth%20in%20Li-O2%20batteries&rft.jtitle=arXiv.org&rft.au=Horstmann,%20B&rft.date=2013-07-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2085929876%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085929876&rft_id=info:pmid/&rfr_iscdi=true |