Rate-dependent morphology of Li2O2 growth in Li-O2 batteries

Compact solid discharge products enable energy storage devices with high gravimetric and volumetric energy densities, but solid deposits on active surfaces can disturb charge transport and induce mechanical stress. In this Letter we develop a nanoscale continuum model for the growth of Li2O2 crystal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2013-07
Hauptverfasser: Horstmann, B, Gallant, B, Mitchell, R, Bessler, W G, Shao-Horn, Y, Bazant, M Z
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Horstmann, B
Gallant, B
Mitchell, R
Bessler, W G
Shao-Horn, Y
Bazant, M Z
description Compact solid discharge products enable energy storage devices with high gravimetric and volumetric energy densities, but solid deposits on active surfaces can disturb charge transport and induce mechanical stress. In this Letter we develop a nanoscale continuum model for the growth of Li2O2 crystals in lithium-oxygen batteries with organic electrolytes, based on a theory of electrochemical non-equilibrium thermodynamics originally applied to Li-ion batteries. As in the case of lithium insertion in phase-separating LiFePO4 nanoparticles, the theory predicts a transition from complex to uniform morphologies of Li2O2 with increasing current. Discrete particle growth at low discharge rates becomes suppressed at high rates, resulting in a film of electronically insulating Li2O2 that limits cell performance. We predict that the transition between these surface growth modes occurs at current densities close to the exchange current density of the cathode reaction, consistent with experimental observations.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085929876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085929876</sourcerecordid><originalsourceid>FETCH-proquest_journals_20859298763</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3CLgOxBf7A3eiuBAEcV9a-vqj5sUkRby9WXgAV8Mws2ARKLUT-R5gxWLnRiklpBkkiYrY4V55FA0a1A1qz59kTU8TdR9OLb8OcAPeWXr7ng86uAheV96jHdBt2LKtJofxj2u2PZ8ex4swll4zOl-ONFsdUgkyTwoo8ixV_11fzjk2pg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085929876</pqid></control><display><type>article</type><title>Rate-dependent morphology of Li2O2 growth in Li-O2 batteries</title><source>Free E- Journals</source><creator>Horstmann, B ; Gallant, B ; Mitchell, R ; Bessler, W G ; Shao-Horn, Y ; Bazant, M Z</creator><creatorcontrib>Horstmann, B ; Gallant, B ; Mitchell, R ; Bessler, W G ; Shao-Horn, Y ; Bazant, M Z</creatorcontrib><description>Compact solid discharge products enable energy storage devices with high gravimetric and volumetric energy densities, but solid deposits on active surfaces can disturb charge transport and induce mechanical stress. In this Letter we develop a nanoscale continuum model for the growth of Li2O2 crystals in lithium-oxygen batteries with organic electrolytes, based on a theory of electrochemical non-equilibrium thermodynamics originally applied to Li-ion batteries. As in the case of lithium insertion in phase-separating LiFePO4 nanoparticles, the theory predicts a transition from complex to uniform morphologies of Li2O2 with increasing current. Discrete particle growth at low discharge rates becomes suppressed at high rates, resulting in a film of electronically insulating Li2O2 that limits cell performance. We predict that the transition between these surface growth modes occurs at current densities close to the exchange current density of the cathode reaction, consistent with experimental observations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Charge transport ; Continuum modeling ; Crystal growth ; Current density ; Discharge ; Energy storage ; Gravimetry ; Lithium ; Lithium batteries ; Lithium-ion batteries ; Metal air batteries ; Morphology ; Nanoparticles ; Nonaqueous electrolytes ; Nonequilibrium thermodynamics ; Rechargeable batteries ; Storage batteries ; Thermodynamic equilibrium</subject><ispartof>arXiv.org, 2013-07</ispartof><rights>2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Horstmann, B</creatorcontrib><creatorcontrib>Gallant, B</creatorcontrib><creatorcontrib>Mitchell, R</creatorcontrib><creatorcontrib>Bessler, W G</creatorcontrib><creatorcontrib>Shao-Horn, Y</creatorcontrib><creatorcontrib>Bazant, M Z</creatorcontrib><title>Rate-dependent morphology of Li2O2 growth in Li-O2 batteries</title><title>arXiv.org</title><description>Compact solid discharge products enable energy storage devices with high gravimetric and volumetric energy densities, but solid deposits on active surfaces can disturb charge transport and induce mechanical stress. In this Letter we develop a nanoscale continuum model for the growth of Li2O2 crystals in lithium-oxygen batteries with organic electrolytes, based on a theory of electrochemical non-equilibrium thermodynamics originally applied to Li-ion batteries. As in the case of lithium insertion in phase-separating LiFePO4 nanoparticles, the theory predicts a transition from complex to uniform morphologies of Li2O2 with increasing current. Discrete particle growth at low discharge rates becomes suppressed at high rates, resulting in a film of electronically insulating Li2O2 that limits cell performance. We predict that the transition between these surface growth modes occurs at current densities close to the exchange current density of the cathode reaction, consistent with experimental observations.</description><subject>Charge transport</subject><subject>Continuum modeling</subject><subject>Crystal growth</subject><subject>Current density</subject><subject>Discharge</subject><subject>Energy storage</subject><subject>Gravimetry</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Lithium-ion batteries</subject><subject>Metal air batteries</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Nonaqueous electrolytes</subject><subject>Nonequilibrium thermodynamics</subject><subject>Rechargeable batteries</subject><subject>Storage batteries</subject><subject>Thermodynamic equilibrium</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiksKwjAUAIMgWLR3CLgOxBf7A3eiuBAEcV9a-vqj5sUkRby9WXgAV8Mws2ARKLUT-R5gxWLnRiklpBkkiYrY4V55FA0a1A1qz59kTU8TdR9OLb8OcAPeWXr7ng86uAheV96jHdBt2LKtJofxj2u2PZ8ex4swll4zOl-ONFsdUgkyTwoo8ixV_11fzjk2pg</recordid><startdate>20130725</startdate><enddate>20130725</enddate><creator>Horstmann, B</creator><creator>Gallant, B</creator><creator>Mitchell, R</creator><creator>Bessler, W G</creator><creator>Shao-Horn, Y</creator><creator>Bazant, M Z</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130725</creationdate><title>Rate-dependent morphology of Li2O2 growth in Li-O2 batteries</title><author>Horstmann, B ; Gallant, B ; Mitchell, R ; Bessler, W G ; Shao-Horn, Y ; Bazant, M Z</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20859298763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Charge transport</topic><topic>Continuum modeling</topic><topic>Crystal growth</topic><topic>Current density</topic><topic>Discharge</topic><topic>Energy storage</topic><topic>Gravimetry</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Lithium-ion batteries</topic><topic>Metal air batteries</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Nonaqueous electrolytes</topic><topic>Nonequilibrium thermodynamics</topic><topic>Rechargeable batteries</topic><topic>Storage batteries</topic><topic>Thermodynamic equilibrium</topic><toplevel>online_resources</toplevel><creatorcontrib>Horstmann, B</creatorcontrib><creatorcontrib>Gallant, B</creatorcontrib><creatorcontrib>Mitchell, R</creatorcontrib><creatorcontrib>Bessler, W G</creatorcontrib><creatorcontrib>Shao-Horn, Y</creatorcontrib><creatorcontrib>Bazant, M Z</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horstmann, B</au><au>Gallant, B</au><au>Mitchell, R</au><au>Bessler, W G</au><au>Shao-Horn, Y</au><au>Bazant, M Z</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Rate-dependent morphology of Li2O2 growth in Li-O2 batteries</atitle><jtitle>arXiv.org</jtitle><date>2013-07-25</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>Compact solid discharge products enable energy storage devices with high gravimetric and volumetric energy densities, but solid deposits on active surfaces can disturb charge transport and induce mechanical stress. In this Letter we develop a nanoscale continuum model for the growth of Li2O2 crystals in lithium-oxygen batteries with organic electrolytes, based on a theory of electrochemical non-equilibrium thermodynamics originally applied to Li-ion batteries. As in the case of lithium insertion in phase-separating LiFePO4 nanoparticles, the theory predicts a transition from complex to uniform morphologies of Li2O2 with increasing current. Discrete particle growth at low discharge rates becomes suppressed at high rates, resulting in a film of electronically insulating Li2O2 that limits cell performance. We predict that the transition between these surface growth modes occurs at current densities close to the exchange current density of the cathode reaction, consistent with experimental observations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2013-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2085929876
source Free E- Journals
subjects Charge transport
Continuum modeling
Crystal growth
Current density
Discharge
Energy storage
Gravimetry
Lithium
Lithium batteries
Lithium-ion batteries
Metal air batteries
Morphology
Nanoparticles
Nonaqueous electrolytes
Nonequilibrium thermodynamics
Rechargeable batteries
Storage batteries
Thermodynamic equilibrium
title Rate-dependent morphology of Li2O2 growth in Li-O2 batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A55%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Rate-dependent%20morphology%20of%20Li2O2%20growth%20in%20Li-O2%20batteries&rft.jtitle=arXiv.org&rft.au=Horstmann,%20B&rft.date=2013-07-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2085929876%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085929876&rft_id=info:pmid/&rfr_iscdi=true