The Random Coding Bound Is Tight for the Average Linear Code or Lattice

In 1973, Gallager proved that the random-coding bound is exponentially tight for the random code ensemble at all rates, even below expurgation. This result explained that the random-coding exponent does not achieve the expurgation exponent due to the properties of the random ensemble, irrespective o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2013-08
Hauptverfasser: Domb, Yuval, Zamir, Ram, Feder, Meir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Domb, Yuval
Zamir, Ram
Feder, Meir
description In 1973, Gallager proved that the random-coding bound is exponentially tight for the random code ensemble at all rates, even below expurgation. This result explained that the random-coding exponent does not achieve the expurgation exponent due to the properties of the random ensemble, irrespective of the utilized bounding technique. It has been conjectured that this same behavior holds true for a random ensemble of linear codes. This conjecture is proved in this paper. Additionally, it is shown that this property extends to Poltyrev's random-coding exponent for a random ensemble of lattices.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085920966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085920966</sourcerecordid><originalsourceid>FETCH-proquest_journals_20859209663</originalsourceid><addsrcrecordid>eNqNys0KgkAUQOEhCJLyHS60FqY7aros6Q9chXsZ8qojNVMzY8-fQQ_Q6izON2MBCrGJshhxwULnBs45pltMEhGwU9UTXKVuzAMK0yjdwd6MuoGLg0p1vYfWWPAT2r3Jyo6gVJqk_WKCaZXSe3WjFZu38u4o_HXJ1sdDVZyjpzWvkZyvBzNaPa0aeZbkyPM0Ff-pDx2GOfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085920966</pqid></control><display><type>article</type><title>The Random Coding Bound Is Tight for the Average Linear Code or Lattice</title><source>Free E- Journals</source><creator>Domb, Yuval ; Zamir, Ram ; Feder, Meir</creator><creatorcontrib>Domb, Yuval ; Zamir, Ram ; Feder, Meir</creatorcontrib><description>In 1973, Gallager proved that the random-coding bound is exponentially tight for the random code ensemble at all rates, even below expurgation. This result explained that the random-coding exponent does not achieve the expurgation exponent due to the properties of the random ensemble, irrespective of the utilized bounding technique. It has been conjectured that this same behavior holds true for a random ensemble of linear codes. This conjecture is proved in this paper. Additionally, it is shown that this property extends to Poltyrev's random-coding exponent for a random ensemble of lattices.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Coding ; Lattices</subject><ispartof>arXiv.org, 2013-08</ispartof><rights>2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Domb, Yuval</creatorcontrib><creatorcontrib>Zamir, Ram</creatorcontrib><creatorcontrib>Feder, Meir</creatorcontrib><title>The Random Coding Bound Is Tight for the Average Linear Code or Lattice</title><title>arXiv.org</title><description>In 1973, Gallager proved that the random-coding bound is exponentially tight for the random code ensemble at all rates, even below expurgation. This result explained that the random-coding exponent does not achieve the expurgation exponent due to the properties of the random ensemble, irrespective of the utilized bounding technique. It has been conjectured that this same behavior holds true for a random ensemble of linear codes. This conjecture is proved in this paper. Additionally, it is shown that this property extends to Poltyrev's random-coding exponent for a random ensemble of lattices.</description><subject>Coding</subject><subject>Lattices</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNys0KgkAUQOEhCJLyHS60FqY7aros6Q9chXsZ8qojNVMzY8-fQQ_Q6izON2MBCrGJshhxwULnBs45pltMEhGwU9UTXKVuzAMK0yjdwd6MuoGLg0p1vYfWWPAT2r3Jyo6gVJqk_WKCaZXSe3WjFZu38u4o_HXJ1sdDVZyjpzWvkZyvBzNaPa0aeZbkyPM0Ff-pDx2GOfQ</recordid><startdate>20130828</startdate><enddate>20130828</enddate><creator>Domb, Yuval</creator><creator>Zamir, Ram</creator><creator>Feder, Meir</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130828</creationdate><title>The Random Coding Bound Is Tight for the Average Linear Code or Lattice</title><author>Domb, Yuval ; Zamir, Ram ; Feder, Meir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20859209663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Coding</topic><topic>Lattices</topic><toplevel>online_resources</toplevel><creatorcontrib>Domb, Yuval</creatorcontrib><creatorcontrib>Zamir, Ram</creatorcontrib><creatorcontrib>Feder, Meir</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Domb, Yuval</au><au>Zamir, Ram</au><au>Feder, Meir</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The Random Coding Bound Is Tight for the Average Linear Code or Lattice</atitle><jtitle>arXiv.org</jtitle><date>2013-08-28</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>In 1973, Gallager proved that the random-coding bound is exponentially tight for the random code ensemble at all rates, even below expurgation. This result explained that the random-coding exponent does not achieve the expurgation exponent due to the properties of the random ensemble, irrespective of the utilized bounding technique. It has been conjectured that this same behavior holds true for a random ensemble of linear codes. This conjecture is proved in this paper. Additionally, it is shown that this property extends to Poltyrev's random-coding exponent for a random ensemble of lattices.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2013-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2085920966
source Free E- Journals
subjects Coding
Lattices
title The Random Coding Bound Is Tight for the Average Linear Code or Lattice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A02%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20Random%20Coding%20Bound%20Is%20Tight%20for%20the%20Average%20Linear%20Code%20or%20Lattice&rft.jtitle=arXiv.org&rft.au=Domb,%20Yuval&rft.date=2013-08-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2085920966%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085920966&rft_id=info:pmid/&rfr_iscdi=true