The role of RGB-D benchmark datasets: an overview
The advent of the Microsoft Kinect three years ago stimulated not only the computer vision community for new algorithms and setups to tackle well-known problems in the community but also sparked the launch of several new benchmark datasets to which future algorithms can be compared 019 to. This revi...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2013-10 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Berger, Kai |
description | The advent of the Microsoft Kinect three years ago stimulated not only the computer vision community for new algorithms and setups to tackle well-known problems in the community but also sparked the launch of several new benchmark datasets to which future algorithms can be compared 019 to. This review of the literature and industry developments concludes that the current RGB-D benchmark datasets can be useful to determine the accuracy of a variety of applications of a single or multiple RGB-D sensors. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085912243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085912243</sourcerecordid><originalsourceid>FETCH-proquest_journals_20859122433</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwDMlIVSjKz0lVyE9TCHJ30nVRSErNS87ITSzKVkhJLEksTi0ptlJIzFPIL0stKstMLedhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjAwtTS0MjIxNjY-JUAQATHTJW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085912243</pqid></control><display><type>article</type><title>The role of RGB-D benchmark datasets: an overview</title><source>Free E- Journals</source><creator>Berger, Kai</creator><creatorcontrib>Berger, Kai</creatorcontrib><description>The advent of the Microsoft Kinect three years ago stimulated not only the computer vision community for new algorithms and setups to tackle well-known problems in the community but also sparked the launch of several new benchmark datasets to which future algorithms can be compared 019 to. This review of the literature and industry developments concludes that the current RGB-D benchmark datasets can be useful to determine the accuracy of a variety of applications of a single or multiple RGB-D sensors.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Benchmarks ; Communities ; Computer vision ; Datasets ; Industrial development ; Literature reviews</subject><ispartof>arXiv.org, 2013-10</ispartof><rights>2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Berger, Kai</creatorcontrib><title>The role of RGB-D benchmark datasets: an overview</title><title>arXiv.org</title><description>The advent of the Microsoft Kinect three years ago stimulated not only the computer vision community for new algorithms and setups to tackle well-known problems in the community but also sparked the launch of several new benchmark datasets to which future algorithms can be compared 019 to. This review of the literature and industry developments concludes that the current RGB-D benchmark datasets can be useful to determine the accuracy of a variety of applications of a single or multiple RGB-D sensors.</description><subject>Algorithms</subject><subject>Benchmarks</subject><subject>Communities</subject><subject>Computer vision</subject><subject>Datasets</subject><subject>Industrial development</subject><subject>Literature reviews</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwDMlIVSjKz0lVyE9TCHJ30nVRSErNS87ITSzKVkhJLEksTi0ptlJIzFPIL0stKstMLedhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjAwtTS0MjIxNjY-JUAQATHTJW</recordid><startdate>20131008</startdate><enddate>20131008</enddate><creator>Berger, Kai</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20131008</creationdate><title>The role of RGB-D benchmark datasets: an overview</title><author>Berger, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20859122433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Benchmarks</topic><topic>Communities</topic><topic>Computer vision</topic><topic>Datasets</topic><topic>Industrial development</topic><topic>Literature reviews</topic><toplevel>online_resources</toplevel><creatorcontrib>Berger, Kai</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berger, Kai</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The role of RGB-D benchmark datasets: an overview</atitle><jtitle>arXiv.org</jtitle><date>2013-10-08</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>The advent of the Microsoft Kinect three years ago stimulated not only the computer vision community for new algorithms and setups to tackle well-known problems in the community but also sparked the launch of several new benchmark datasets to which future algorithms can be compared 019 to. This review of the literature and industry developments concludes that the current RGB-D benchmark datasets can be useful to determine the accuracy of a variety of applications of a single or multiple RGB-D sensors.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2013-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2085912243 |
source | Free E- Journals |
subjects | Algorithms Benchmarks Communities Computer vision Datasets Industrial development Literature reviews |
title | The role of RGB-D benchmark datasets: an overview |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A20%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20role%20of%20RGB-D%20benchmark%20datasets:%20an%20overview&rft.jtitle=arXiv.org&rft.au=Berger,%20Kai&rft.date=2013-10-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2085912243%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085912243&rft_id=info:pmid/&rfr_iscdi=true |