Stochastic Agent-Based Simulations of Social Networks
The rapidly growing field of network analytics requires data sets for use in evaluation. Real world data often lack truth and simulated data lack narrative fidelity or statistical generality. This paper presents a novel, mixed-membership, agentbased simulation model to generate activity data with na...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2013-09 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bernstein, Garrett O'Brien, Kyle |
description | The rapidly growing field of network analytics requires data sets for use in evaluation. Real world data often lack truth and simulated data lack narrative fidelity or statistical generality. This paper presents a novel, mixed-membership, agentbased simulation model to generate activity data with narrative power while providing statistical diversity through random draws. The model generalizes to a variety of network activity types such as Internet and cellular communications, human mobility, and social network interactions. The simulated actions over all agents can then drive an application specific observational model to render measurements as one would collect in real-world experiments. We apply this framework to human mobility and demonstrate its utility in generating high fidelity traffic data for network analytics. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085833487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085833487</sourcerecordid><originalsourceid>FETCH-proquest_journals_20858334873</originalsourceid><addsrcrecordid>eNqNyrEOwiAUQFFiYmKj_QcSZxKEYlnVaJxc6t4QpEpFnvIg_r4OfoDTHc6dkEpIuWK6EWJGasSRcy7WrVBKVkR1GezNYPaWbq4uZrY16C60848STPYQkcJAO7DeBHpy-Q3pjgsyHUxAV_86J8vD_rw7smeCV3GY-xFKil_qBddKS9noVv53fQCGhzTv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085833487</pqid></control><display><type>article</type><title>Stochastic Agent-Based Simulations of Social Networks</title><source>Free E- Journals</source><creator>Bernstein, Garrett ; O'Brien, Kyle</creator><creatorcontrib>Bernstein, Garrett ; O'Brien, Kyle</creatorcontrib><description>The rapidly growing field of network analytics requires data sets for use in evaluation. Real world data often lack truth and simulated data lack narrative fidelity or statistical generality. This paper presents a novel, mixed-membership, agentbased simulation model to generate activity data with narrative power while providing statistical diversity through random draws. The model generalizes to a variety of network activity types such as Internet and cellular communications, human mobility, and social network interactions. The simulated actions over all agents can then drive an application specific observational model to render measurements as one would collect in real-world experiments. We apply this framework to human mobility and demonstrate its utility in generating high fidelity traffic data for network analytics.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Analytics ; Computer simulation ; Data analysis ; Simulation ; Social networks ; Traffic information</subject><ispartof>arXiv.org, 2013-09</ispartof><rights>2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Bernstein, Garrett</creatorcontrib><creatorcontrib>O'Brien, Kyle</creatorcontrib><title>Stochastic Agent-Based Simulations of Social Networks</title><title>arXiv.org</title><description>The rapidly growing field of network analytics requires data sets for use in evaluation. Real world data often lack truth and simulated data lack narrative fidelity or statistical generality. This paper presents a novel, mixed-membership, agentbased simulation model to generate activity data with narrative power while providing statistical diversity through random draws. The model generalizes to a variety of network activity types such as Internet and cellular communications, human mobility, and social network interactions. The simulated actions over all agents can then drive an application specific observational model to render measurements as one would collect in real-world experiments. We apply this framework to human mobility and demonstrate its utility in generating high fidelity traffic data for network analytics.</description><subject>Analytics</subject><subject>Computer simulation</subject><subject>Data analysis</subject><subject>Simulation</subject><subject>Social networks</subject><subject>Traffic information</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEOwiAUQFFiYmKj_QcSZxKEYlnVaJxc6t4QpEpFnvIg_r4OfoDTHc6dkEpIuWK6EWJGasSRcy7WrVBKVkR1GezNYPaWbq4uZrY16C60848STPYQkcJAO7DeBHpy-Q3pjgsyHUxAV_86J8vD_rw7smeCV3GY-xFKil_qBddKS9noVv53fQCGhzTv</recordid><startdate>20130906</startdate><enddate>20130906</enddate><creator>Bernstein, Garrett</creator><creator>O'Brien, Kyle</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130906</creationdate><title>Stochastic Agent-Based Simulations of Social Networks</title><author>Bernstein, Garrett ; O'Brien, Kyle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20858334873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analytics</topic><topic>Computer simulation</topic><topic>Data analysis</topic><topic>Simulation</topic><topic>Social networks</topic><topic>Traffic information</topic><toplevel>online_resources</toplevel><creatorcontrib>Bernstein, Garrett</creatorcontrib><creatorcontrib>O'Brien, Kyle</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bernstein, Garrett</au><au>O'Brien, Kyle</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Stochastic Agent-Based Simulations of Social Networks</atitle><jtitle>arXiv.org</jtitle><date>2013-09-06</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>The rapidly growing field of network analytics requires data sets for use in evaluation. Real world data often lack truth and simulated data lack narrative fidelity or statistical generality. This paper presents a novel, mixed-membership, agentbased simulation model to generate activity data with narrative power while providing statistical diversity through random draws. The model generalizes to a variety of network activity types such as Internet and cellular communications, human mobility, and social network interactions. The simulated actions over all agents can then drive an application specific observational model to render measurements as one would collect in real-world experiments. We apply this framework to human mobility and demonstrate its utility in generating high fidelity traffic data for network analytics.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2013-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2085833487 |
source | Free E- Journals |
subjects | Analytics Computer simulation Data analysis Simulation Social networks Traffic information |
title | Stochastic Agent-Based Simulations of Social Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A47%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Stochastic%20Agent-Based%20Simulations%20of%20Social%20Networks&rft.jtitle=arXiv.org&rft.au=Bernstein,%20Garrett&rft.date=2013-09-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2085833487%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085833487&rft_id=info:pmid/&rfr_iscdi=true |