Stochastic Agent-Based Simulations of Social Networks

The rapidly growing field of network analytics requires data sets for use in evaluation. Real world data often lack truth and simulated data lack narrative fidelity or statistical generality. This paper presents a novel, mixed-membership, agentbased simulation model to generate activity data with na...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2013-09
Hauptverfasser: Bernstein, Garrett, O'Brien, Kyle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bernstein, Garrett
O'Brien, Kyle
description The rapidly growing field of network analytics requires data sets for use in evaluation. Real world data often lack truth and simulated data lack narrative fidelity or statistical generality. This paper presents a novel, mixed-membership, agentbased simulation model to generate activity data with narrative power while providing statistical diversity through random draws. The model generalizes to a variety of network activity types such as Internet and cellular communications, human mobility, and social network interactions. The simulated actions over all agents can then drive an application specific observational model to render measurements as one would collect in real-world experiments. We apply this framework to human mobility and demonstrate its utility in generating high fidelity traffic data for network analytics.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085833487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085833487</sourcerecordid><originalsourceid>FETCH-proquest_journals_20858334873</originalsourceid><addsrcrecordid>eNqNyrEOwiAUQFFiYmKj_QcSZxKEYlnVaJxc6t4QpEpFnvIg_r4OfoDTHc6dkEpIuWK6EWJGasSRcy7WrVBKVkR1GezNYPaWbq4uZrY16C60848STPYQkcJAO7DeBHpy-Q3pjgsyHUxAV_86J8vD_rw7smeCV3GY-xFKil_qBddKS9noVv53fQCGhzTv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085833487</pqid></control><display><type>article</type><title>Stochastic Agent-Based Simulations of Social Networks</title><source>Free E- Journals</source><creator>Bernstein, Garrett ; O'Brien, Kyle</creator><creatorcontrib>Bernstein, Garrett ; O'Brien, Kyle</creatorcontrib><description>The rapidly growing field of network analytics requires data sets for use in evaluation. Real world data often lack truth and simulated data lack narrative fidelity or statistical generality. This paper presents a novel, mixed-membership, agentbased simulation model to generate activity data with narrative power while providing statistical diversity through random draws. The model generalizes to a variety of network activity types such as Internet and cellular communications, human mobility, and social network interactions. The simulated actions over all agents can then drive an application specific observational model to render measurements as one would collect in real-world experiments. We apply this framework to human mobility and demonstrate its utility in generating high fidelity traffic data for network analytics.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Analytics ; Computer simulation ; Data analysis ; Simulation ; Social networks ; Traffic information</subject><ispartof>arXiv.org, 2013-09</ispartof><rights>2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Bernstein, Garrett</creatorcontrib><creatorcontrib>O'Brien, Kyle</creatorcontrib><title>Stochastic Agent-Based Simulations of Social Networks</title><title>arXiv.org</title><description>The rapidly growing field of network analytics requires data sets for use in evaluation. Real world data often lack truth and simulated data lack narrative fidelity or statistical generality. This paper presents a novel, mixed-membership, agentbased simulation model to generate activity data with narrative power while providing statistical diversity through random draws. The model generalizes to a variety of network activity types such as Internet and cellular communications, human mobility, and social network interactions. The simulated actions over all agents can then drive an application specific observational model to render measurements as one would collect in real-world experiments. We apply this framework to human mobility and demonstrate its utility in generating high fidelity traffic data for network analytics.</description><subject>Analytics</subject><subject>Computer simulation</subject><subject>Data analysis</subject><subject>Simulation</subject><subject>Social networks</subject><subject>Traffic information</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEOwiAUQFFiYmKj_QcSZxKEYlnVaJxc6t4QpEpFnvIg_r4OfoDTHc6dkEpIuWK6EWJGasSRcy7WrVBKVkR1GezNYPaWbq4uZrY16C60848STPYQkcJAO7DeBHpy-Q3pjgsyHUxAV_86J8vD_rw7smeCV3GY-xFKil_qBddKS9noVv53fQCGhzTv</recordid><startdate>20130906</startdate><enddate>20130906</enddate><creator>Bernstein, Garrett</creator><creator>O'Brien, Kyle</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130906</creationdate><title>Stochastic Agent-Based Simulations of Social Networks</title><author>Bernstein, Garrett ; O'Brien, Kyle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20858334873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analytics</topic><topic>Computer simulation</topic><topic>Data analysis</topic><topic>Simulation</topic><topic>Social networks</topic><topic>Traffic information</topic><toplevel>online_resources</toplevel><creatorcontrib>Bernstein, Garrett</creatorcontrib><creatorcontrib>O'Brien, Kyle</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bernstein, Garrett</au><au>O'Brien, Kyle</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Stochastic Agent-Based Simulations of Social Networks</atitle><jtitle>arXiv.org</jtitle><date>2013-09-06</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>The rapidly growing field of network analytics requires data sets for use in evaluation. Real world data often lack truth and simulated data lack narrative fidelity or statistical generality. This paper presents a novel, mixed-membership, agentbased simulation model to generate activity data with narrative power while providing statistical diversity through random draws. The model generalizes to a variety of network activity types such as Internet and cellular communications, human mobility, and social network interactions. The simulated actions over all agents can then drive an application specific observational model to render measurements as one would collect in real-world experiments. We apply this framework to human mobility and demonstrate its utility in generating high fidelity traffic data for network analytics.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2013-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2085833487
source Free E- Journals
subjects Analytics
Computer simulation
Data analysis
Simulation
Social networks
Traffic information
title Stochastic Agent-Based Simulations of Social Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A47%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Stochastic%20Agent-Based%20Simulations%20of%20Social%20Networks&rft.jtitle=arXiv.org&rft.au=Bernstein,%20Garrett&rft.date=2013-09-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2085833487%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085833487&rft_id=info:pmid/&rfr_iscdi=true