The dynamics of knowledge acquisition via self-learning in complex networks

Studies regarding knowledge organization and acquisition are of great importance to understand areas related to science and technology. A common way to model the relationship between different concepts is through complex networks. In such representations, networks’ nodes store knowledge and edges re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2018-08, Vol.28 (8), p.083106-083106
Hauptverfasser: Lima, Thales S., de Arruda, Henrique F., Silva, Filipi N., Comin, Cesar H., Amancio, Diego R., Costa, Luciano da F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 083106
container_issue 8
container_start_page 083106
container_title Chaos (Woodbury, N.Y.)
container_volume 28
creator Lima, Thales S.
de Arruda, Henrique F.
Silva, Filipi N.
Comin, Cesar H.
Amancio, Diego R.
Costa, Luciano da F.
description Studies regarding knowledge organization and acquisition are of great importance to understand areas related to science and technology. A common way to model the relationship between different concepts is through complex networks. In such representations, networks’ nodes store knowledge and edges represent their relationships. Several studies that considered this type of structure and knowledge acquisition dynamics employed one or more agents to discover node concepts by walking on the network. In this study, we investigate a different type of dynamics adopting a single node as the “network brain.” Such a brain represents a range of real systems such as the information about the environment that is acquired by a person and is stored in the brain. To store the discovered information in a specific node, the agents walk on the network and return to the brain. We propose three different dynamics and test them on several network models and on a real system, which is formed by journal articles and their respective citations. The results revealed that, according to the adopted walking models, the efficiency of self-knowledge acquisition has only a weak dependency on topology and search strategy.
doi_str_mv 10.1063/1.5027007
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2085769591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2099893189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-a111bbc11c2afb105d2809d925b7a9130a568eed84936af00a858ee04dcf71d03</originalsourceid><addsrcrecordid>eNp90F1r2zAUBmAxNtY228X-QBHsZi04O8eKbOmyhH6MFnqTXhtZklsltpRKdrP8-zok62CFXQhJ8PCew0vIN4QpQsF-4pRDXgKUH8gxgpBZWYj84-7NZxlygCNyktISADBn_DM5YoACCj47JreLJ0vN1qvO6URDQ1c-bFprHi1V-nlwyfUuePriFE22bbLWquidf6TOUx26dWt_U2_7TYir9IV8alSb7NfDPSEPV5eL-U12d3_9a35xl2kmWJ8pRKxrjahz1dTjjiYXII3MeV0qiQwUL4S1RswkK1QDoAQf_zAzuinRAJuQH_vcdQzPg0191bmkbdsqb8OQqhykFJLheCbk-z90GYbox-1GJXhZSD5OnJCzvdIxpBRtU62j61TcVgjVruEKq0PDoz09JA51Z82b_FPpCM73IGnXq117b-YlxL9J1do0_8PvR78CpkaQqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085769591</pqid></control><display><type>article</type><title>The dynamics of knowledge acquisition via self-learning in complex networks</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Lima, Thales S. ; de Arruda, Henrique F. ; Silva, Filipi N. ; Comin, Cesar H. ; Amancio, Diego R. ; Costa, Luciano da F.</creator><creatorcontrib>Lima, Thales S. ; de Arruda, Henrique F. ; Silva, Filipi N. ; Comin, Cesar H. ; Amancio, Diego R. ; Costa, Luciano da F.</creatorcontrib><description>Studies regarding knowledge organization and acquisition are of great importance to understand areas related to science and technology. A common way to model the relationship between different concepts is through complex networks. In such representations, networks’ nodes store knowledge and edges represent their relationships. Several studies that considered this type of structure and knowledge acquisition dynamics employed one or more agents to discover node concepts by walking on the network. In this study, we investigate a different type of dynamics adopting a single node as the “network brain.” Such a brain represents a range of real systems such as the information about the environment that is acquired by a person and is stored in the brain. To store the discovered information in a specific node, the agents walk on the network and return to the brain. We propose three different dynamics and test them on several network models and on a real system, which is formed by journal articles and their respective citations. The results revealed that, according to the adopted walking models, the efficiency of self-knowledge acquisition has only a weak dependency on topology and search strategy.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.5027007</identifier><identifier>PMID: 30180654</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Brain ; Dependence ; Dynamic structural analysis ; Dynamics ; Knowledge acquisition ; Knowledge management ; Knowledge representation ; Networks ; Walking</subject><ispartof>Chaos (Woodbury, N.Y.), 2018-08, Vol.28 (8), p.083106-083106</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-a111bbc11c2afb105d2809d925b7a9130a568eed84936af00a858ee04dcf71d03</citedby><cites>FETCH-LOGICAL-c383t-a111bbc11c2afb105d2809d925b7a9130a568eed84936af00a858ee04dcf71d03</cites><orcidid>0000-0002-9151-6517 ; 0000-0002-4325-6888 ; 0000000291516517 ; 0000000243256888</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30180654$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lima, Thales S.</creatorcontrib><creatorcontrib>de Arruda, Henrique F.</creatorcontrib><creatorcontrib>Silva, Filipi N.</creatorcontrib><creatorcontrib>Comin, Cesar H.</creatorcontrib><creatorcontrib>Amancio, Diego R.</creatorcontrib><creatorcontrib>Costa, Luciano da F.</creatorcontrib><title>The dynamics of knowledge acquisition via self-learning in complex networks</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>Studies regarding knowledge organization and acquisition are of great importance to understand areas related to science and technology. A common way to model the relationship between different concepts is through complex networks. In such representations, networks’ nodes store knowledge and edges represent their relationships. Several studies that considered this type of structure and knowledge acquisition dynamics employed one or more agents to discover node concepts by walking on the network. In this study, we investigate a different type of dynamics adopting a single node as the “network brain.” Such a brain represents a range of real systems such as the information about the environment that is acquired by a person and is stored in the brain. To store the discovered information in a specific node, the agents walk on the network and return to the brain. We propose three different dynamics and test them on several network models and on a real system, which is formed by journal articles and their respective citations. The results revealed that, according to the adopted walking models, the efficiency of self-knowledge acquisition has only a weak dependency on topology and search strategy.</description><subject>Brain</subject><subject>Dependence</subject><subject>Dynamic structural analysis</subject><subject>Dynamics</subject><subject>Knowledge acquisition</subject><subject>Knowledge management</subject><subject>Knowledge representation</subject><subject>Networks</subject><subject>Walking</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90F1r2zAUBmAxNtY228X-QBHsZi04O8eKbOmyhH6MFnqTXhtZklsltpRKdrP8-zok62CFXQhJ8PCew0vIN4QpQsF-4pRDXgKUH8gxgpBZWYj84-7NZxlygCNyktISADBn_DM5YoACCj47JreLJ0vN1qvO6URDQ1c-bFprHi1V-nlwyfUuePriFE22bbLWquidf6TOUx26dWt_U2_7TYir9IV8alSb7NfDPSEPV5eL-U12d3_9a35xl2kmWJ8pRKxrjahz1dTjjiYXII3MeV0qiQwUL4S1RswkK1QDoAQf_zAzuinRAJuQH_vcdQzPg0191bmkbdsqb8OQqhykFJLheCbk-z90GYbox-1GJXhZSD5OnJCzvdIxpBRtU62j61TcVgjVruEKq0PDoz09JA51Z82b_FPpCM73IGnXq117b-YlxL9J1do0_8PvR78CpkaQqw</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Lima, Thales S.</creator><creator>de Arruda, Henrique F.</creator><creator>Silva, Filipi N.</creator><creator>Comin, Cesar H.</creator><creator>Amancio, Diego R.</creator><creator>Costa, Luciano da F.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9151-6517</orcidid><orcidid>https://orcid.org/0000-0002-4325-6888</orcidid><orcidid>https://orcid.org/0000000291516517</orcidid><orcidid>https://orcid.org/0000000243256888</orcidid></search><sort><creationdate>201808</creationdate><title>The dynamics of knowledge acquisition via self-learning in complex networks</title><author>Lima, Thales S. ; de Arruda, Henrique F. ; Silva, Filipi N. ; Comin, Cesar H. ; Amancio, Diego R. ; Costa, Luciano da F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-a111bbc11c2afb105d2809d925b7a9130a568eed84936af00a858ee04dcf71d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Brain</topic><topic>Dependence</topic><topic>Dynamic structural analysis</topic><topic>Dynamics</topic><topic>Knowledge acquisition</topic><topic>Knowledge management</topic><topic>Knowledge representation</topic><topic>Networks</topic><topic>Walking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lima, Thales S.</creatorcontrib><creatorcontrib>de Arruda, Henrique F.</creatorcontrib><creatorcontrib>Silva, Filipi N.</creatorcontrib><creatorcontrib>Comin, Cesar H.</creatorcontrib><creatorcontrib>Amancio, Diego R.</creatorcontrib><creatorcontrib>Costa, Luciano da F.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lima, Thales S.</au><au>de Arruda, Henrique F.</au><au>Silva, Filipi N.</au><au>Comin, Cesar H.</au><au>Amancio, Diego R.</au><au>Costa, Luciano da F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The dynamics of knowledge acquisition via self-learning in complex networks</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2018-08</date><risdate>2018</risdate><volume>28</volume><issue>8</issue><spage>083106</spage><epage>083106</epage><pages>083106-083106</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>Studies regarding knowledge organization and acquisition are of great importance to understand areas related to science and technology. A common way to model the relationship between different concepts is through complex networks. In such representations, networks’ nodes store knowledge and edges represent their relationships. Several studies that considered this type of structure and knowledge acquisition dynamics employed one or more agents to discover node concepts by walking on the network. In this study, we investigate a different type of dynamics adopting a single node as the “network brain.” Such a brain represents a range of real systems such as the information about the environment that is acquired by a person and is stored in the brain. To store the discovered information in a specific node, the agents walk on the network and return to the brain. We propose three different dynamics and test them on several network models and on a real system, which is formed by journal articles and their respective citations. The results revealed that, according to the adopted walking models, the efficiency of self-knowledge acquisition has only a weak dependency on topology and search strategy.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30180654</pmid><doi>10.1063/1.5027007</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9151-6517</orcidid><orcidid>https://orcid.org/0000-0002-4325-6888</orcidid><orcidid>https://orcid.org/0000000291516517</orcidid><orcidid>https://orcid.org/0000000243256888</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2018-08, Vol.28 (8), p.083106-083106
issn 1054-1500
1089-7682
language eng
recordid cdi_proquest_journals_2085769591
source AIP Journals Complete; Alma/SFX Local Collection
subjects Brain
Dependence
Dynamic structural analysis
Dynamics
Knowledge acquisition
Knowledge management
Knowledge representation
Networks
Walking
title The dynamics of knowledge acquisition via self-learning in complex networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T10%3A20%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20dynamics%20of%20knowledge%20acquisition%20via%20self-learning%20in%20complex%20networks&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Lima,%20Thales%20S.&rft.date=2018-08&rft.volume=28&rft.issue=8&rft.spage=083106&rft.epage=083106&rft.pages=083106-083106&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.5027007&rft_dat=%3Cproquest_pubme%3E2099893189%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085769591&rft_id=info:pmid/30180654&rfr_iscdi=true