Lattice Monte Carlo methods for systems far from equilibrium

We present a new numerical Monte Carlo approach to determine the scaling behavior of lattice field theories far from equilibrium. The presented methods are generally applicable to systems where classical-statistical fluctuations dominate the dynamics. As an example, these methods are applied to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2013-11
Hauptverfasser: Mesterházy, David, Biferale, Luca, Jansen, Karl, Tripiccione, Raffaele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Mesterházy, David
Biferale, Luca
Jansen, Karl
Tripiccione, Raffaele
description We present a new numerical Monte Carlo approach to determine the scaling behavior of lattice field theories far from equilibrium. The presented methods are generally applicable to systems where classical-statistical fluctuations dominate the dynamics. As an example, these methods are applied to the random-force-driven one-dimensional Burgers' equation - a model for hydrodynamic turbulence. For a self-similar forcing acting on all scales the system is driven to a nonequilibrium steady state characterized by a Kolmogorov energy spectrum. We extract correlation functions of single- and multi-point quantities and determine their scaling spectrum displaying anomalous scaling for high-order moments. Varying the external forcing we are able to tune the system continuously from equilibrium, where the fluctuations are short-range correlated, to the case where the system is strongly driven in the infrared. In the latter case the nonequilibrium scaling of small-scale fluctuations are shown to be universal.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085697709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085697709</sourcerecordid><originalsourceid>FETCH-proquest_journals_20856977093</originalsourceid><addsrcrecordid>eNqNissKwjAQAIMgWLT_sOC5EBP7Am9F8aA37yXqFlOars0mB__eHvwATzMwsxCJ0nqXVXulViJl7qWUqihVnutEHC4mBPtAuNIYEBrjBwKH4UVPho488IcDutmNh86TA5yiHezd2-g2YtmZgTH9cS22p-OtOWdvT1NEDm1P0Y9zapWs8qIuS1nr_64vRJk3zQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085697709</pqid></control><display><type>article</type><title>Lattice Monte Carlo methods for systems far from equilibrium</title><source>Free E- Journals</source><creator>Mesterházy, David ; Biferale, Luca ; Jansen, Karl ; Tripiccione, Raffaele</creator><creatorcontrib>Mesterházy, David ; Biferale, Luca ; Jansen, Karl ; Tripiccione, Raffaele</creatorcontrib><description>We present a new numerical Monte Carlo approach to determine the scaling behavior of lattice field theories far from equilibrium. The presented methods are generally applicable to systems where classical-statistical fluctuations dominate the dynamics. As an example, these methods are applied to the random-force-driven one-dimensional Burgers' equation - a model for hydrodynamic turbulence. For a self-similar forcing acting on all scales the system is driven to a nonequilibrium steady state characterized by a Kolmogorov energy spectrum. We extract correlation functions of single- and multi-point quantities and determine their scaling spectrum displaying anomalous scaling for high-order moments. Varying the external forcing we are able to tune the system continuously from equilibrium, where the fluctuations are short-range correlated, to the case where the system is strongly driven in the infrared. In the latter case the nonequilibrium scaling of small-scale fluctuations are shown to be universal.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Burgers equation ; Computer simulation ; Energy spectra ; Equilibrium ; Equilibrium methods ; Mathematical models ; Monte Carlo simulation ; Scaling ; Self-similarity ; Variation</subject><ispartof>arXiv.org, 2013-11</ispartof><rights>2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Mesterházy, David</creatorcontrib><creatorcontrib>Biferale, Luca</creatorcontrib><creatorcontrib>Jansen, Karl</creatorcontrib><creatorcontrib>Tripiccione, Raffaele</creatorcontrib><title>Lattice Monte Carlo methods for systems far from equilibrium</title><title>arXiv.org</title><description>We present a new numerical Monte Carlo approach to determine the scaling behavior of lattice field theories far from equilibrium. The presented methods are generally applicable to systems where classical-statistical fluctuations dominate the dynamics. As an example, these methods are applied to the random-force-driven one-dimensional Burgers' equation - a model for hydrodynamic turbulence. For a self-similar forcing acting on all scales the system is driven to a nonequilibrium steady state characterized by a Kolmogorov energy spectrum. We extract correlation functions of single- and multi-point quantities and determine their scaling spectrum displaying anomalous scaling for high-order moments. Varying the external forcing we are able to tune the system continuously from equilibrium, where the fluctuations are short-range correlated, to the case where the system is strongly driven in the infrared. In the latter case the nonequilibrium scaling of small-scale fluctuations are shown to be universal.</description><subject>Burgers equation</subject><subject>Computer simulation</subject><subject>Energy spectra</subject><subject>Equilibrium</subject><subject>Equilibrium methods</subject><subject>Mathematical models</subject><subject>Monte Carlo simulation</subject><subject>Scaling</subject><subject>Self-similarity</subject><subject>Variation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNissKwjAQAIMgWLT_sOC5EBP7Am9F8aA37yXqFlOars0mB__eHvwATzMwsxCJ0nqXVXulViJl7qWUqihVnutEHC4mBPtAuNIYEBrjBwKH4UVPho488IcDutmNh86TA5yiHezd2-g2YtmZgTH9cS22p-OtOWdvT1NEDm1P0Y9zapWs8qIuS1nr_64vRJk3zQ</recordid><startdate>20131118</startdate><enddate>20131118</enddate><creator>Mesterházy, David</creator><creator>Biferale, Luca</creator><creator>Jansen, Karl</creator><creator>Tripiccione, Raffaele</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20131118</creationdate><title>Lattice Monte Carlo methods for systems far from equilibrium</title><author>Mesterházy, David ; Biferale, Luca ; Jansen, Karl ; Tripiccione, Raffaele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20856977093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Burgers equation</topic><topic>Computer simulation</topic><topic>Energy spectra</topic><topic>Equilibrium</topic><topic>Equilibrium methods</topic><topic>Mathematical models</topic><topic>Monte Carlo simulation</topic><topic>Scaling</topic><topic>Self-similarity</topic><topic>Variation</topic><toplevel>online_resources</toplevel><creatorcontrib>Mesterházy, David</creatorcontrib><creatorcontrib>Biferale, Luca</creatorcontrib><creatorcontrib>Jansen, Karl</creatorcontrib><creatorcontrib>Tripiccione, Raffaele</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mesterházy, David</au><au>Biferale, Luca</au><au>Jansen, Karl</au><au>Tripiccione, Raffaele</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Lattice Monte Carlo methods for systems far from equilibrium</atitle><jtitle>arXiv.org</jtitle><date>2013-11-18</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>We present a new numerical Monte Carlo approach to determine the scaling behavior of lattice field theories far from equilibrium. The presented methods are generally applicable to systems where classical-statistical fluctuations dominate the dynamics. As an example, these methods are applied to the random-force-driven one-dimensional Burgers' equation - a model for hydrodynamic turbulence. For a self-similar forcing acting on all scales the system is driven to a nonequilibrium steady state characterized by a Kolmogorov energy spectrum. We extract correlation functions of single- and multi-point quantities and determine their scaling spectrum displaying anomalous scaling for high-order moments. Varying the external forcing we are able to tune the system continuously from equilibrium, where the fluctuations are short-range correlated, to the case where the system is strongly driven in the infrared. In the latter case the nonequilibrium scaling of small-scale fluctuations are shown to be universal.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2013-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2085697709
source Free E- Journals
subjects Burgers equation
Computer simulation
Energy spectra
Equilibrium
Equilibrium methods
Mathematical models
Monte Carlo simulation
Scaling
Self-similarity
Variation
title Lattice Monte Carlo methods for systems far from equilibrium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A40%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Lattice%20Monte%20Carlo%20methods%20for%20systems%20far%20from%20equilibrium&rft.jtitle=arXiv.org&rft.au=Mesterh%C3%A1zy,%20David&rft.date=2013-11-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2085697709%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085697709&rft_id=info:pmid/&rfr_iscdi=true