On the analysis of a coupled kinetic-fluid model with local alignment forces

This paper studies global existence, hydrodynamic limit, and large-time behavior of weak solutions to a kinetic flocking model coupled to the incompressible Navier-Stokes equations. The model describes the motion of particles immersed in a Navier-Stokes fluid interacting through local alignment. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2013-11
Hauptverfasser: Carrillo, J A, Y -P Choi, Karper, T K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper studies global existence, hydrodynamic limit, and large-time behavior of weak solutions to a kinetic flocking model coupled to the incompressible Navier-Stokes equations. The model describes the motion of particles immersed in a Navier-Stokes fluid interacting through local alignment. We first prove the existence of weak solutions using energy and \(L^p\) estimates together with the velocity averaging lemma. We also rigorously establish a hydrodynamic limit corresponding to strong noise and local alignment. In this limit, the dynamics can be totally described by a coupled compressible Euler - incompressible Navier-Stokes system. The proof is via relative entropy techniques. Finally, we show a conditional result on the large-time behavior of classical solutions. Specifically, if the mass-density satisfies a uniform in time integrability estimate, then particles align with the fluid velocity exponentially fast without any further assumption on the viscosity of the fluid.
ISSN:2331-8422