Dielectric properties, complex impedance and electrical conductivity of Fe2TiO5 nanopowder compacts and bulk samples at elevated temperatures

In this work we have investigated changes in dielectric properties, electrical conductivity and complex impedance of Fe 2 TiO 5 nanopowder compacts and bulk samples as a function of elevated temperature (room to 423 K compacts, to 443 K bulk samples), frequency (100 Hz–1 MHz) and composition (starti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2017-03, Vol.28 (6), p.4796-4806
Hauptverfasser: Nikolic, M. V., Sekulic, D. L., Vasiljevic, Z. Z., Lukovic, M. D., Pavlovic, V. B., Aleksic, O. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4806
container_issue 6
container_start_page 4796
container_title Journal of materials science. Materials in electronics
container_volume 28
creator Nikolic, M. V.
Sekulic, D. L.
Vasiljevic, Z. Z.
Lukovic, M. D.
Pavlovic, V. B.
Aleksic, O. S.
description In this work we have investigated changes in dielectric properties, electrical conductivity and complex impedance of Fe 2 TiO 5 nanopowder compacts and bulk samples as a function of elevated temperature (room to 423 K compacts, to 443 K bulk samples), frequency (100 Hz–1 MHz) and composition (starting molar ratio of Fe 2 O 3 and TiO 2 1:1—PSB11 and 1:1.5—PSB115). XRD, SEM and TEM analysis of PSB11 and PSB115 powders obtained by a simple solid state process from starting hematite and anatase nanopowders confirmed the formation of nanostructured orthorhombic pseudobrookite with small amounts of excess hematite and rutile. The dielectric constant decreased with frequency and temperature for both compacts and bulk samples. Higher values were determined for bulk samples also reflecting the influence of sample composition. Change in the dielectric loss also reflected the influence of sample composition showing one maximum at high frequencies for compacts, and two maxima at room temperature for bulk samples. Complex impedance was analyzed using equivalent circuits and showed in the case of compacts the influence of both grain and grain boundary components, while in the case of bulk samples the dominant influence of grain boundaries. The temperature dependence of the determined grain and grain boundary resistance for compacts and grain boundary resistance for bulk samples was analyzed using the adiabatic small polaron hopping model enabling determination of activation energies for conduction, while the temperature dependence of relaxation times enabled determination of activation energies for relaxation. Changes in electrical conductivity for compacts and bulk samples followed Jonscher’s power law. The change of the determined frequency constant with temperature showed that at elevated temperatures the quantum mechanical-tunneling model for the case of small polaron hopping explains the conduction mechanism occurring in both compacts and bulk samples.
doi_str_mv 10.1007/s10854-016-6125-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2085672468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085672468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e84a75243469e647daa6df98285513b8e1e626e4d22fa292889bc6217f302ab73</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouH78AG8Br1aTaZKmR1ldFRb2ouAtZNOpVLttTdJVf4T_2ayrePI0MLzvM8xDyAln55yx4iJwpqXIGFeZ4iAztUMmXBZ5JjQ87pIJK2WRCQmwTw5CeGaMKZHrCfm8arBFF33j6OD7AX1sMJxR16-GFt9psxqwsp1DaruK_kZtmwJdNbrYrJv4QfuazhDum4Wkne36oX-r0H8zrIvhu7oc2xca7IaaFnGDWtuIFY2YTngbR4_hiOzVtg14_DMPycPs-n56m80XN3fTy3nmcq5ihlrYQoLIhSpRiaKyVlV1qUFLyfOlRo4KFIoKoLZQgtbl0ingRZ0zsMsiPySnW256-XXEEM1zP_ounTSQPKoChNIpxbcp5_sQPNZm8M3K-g_DmdlYN1vrJlk3G-tGpQ5sOyFluyf0f-T_S187XIc7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085672468</pqid></control><display><type>article</type><title>Dielectric properties, complex impedance and electrical conductivity of Fe2TiO5 nanopowder compacts and bulk samples at elevated temperatures</title><source>Springer Nature - Complete Springer Journals</source><creator>Nikolic, M. V. ; Sekulic, D. L. ; Vasiljevic, Z. Z. ; Lukovic, M. D. ; Pavlovic, V. B. ; Aleksic, O. S.</creator><creatorcontrib>Nikolic, M. V. ; Sekulic, D. L. ; Vasiljevic, Z. Z. ; Lukovic, M. D. ; Pavlovic, V. B. ; Aleksic, O. S.</creatorcontrib><description>In this work we have investigated changes in dielectric properties, electrical conductivity and complex impedance of Fe 2 TiO 5 nanopowder compacts and bulk samples as a function of elevated temperature (room to 423 K compacts, to 443 K bulk samples), frequency (100 Hz–1 MHz) and composition (starting molar ratio of Fe 2 O 3 and TiO 2 1:1—PSB11 and 1:1.5—PSB115). XRD, SEM and TEM analysis of PSB11 and PSB115 powders obtained by a simple solid state process from starting hematite and anatase nanopowders confirmed the formation of nanostructured orthorhombic pseudobrookite with small amounts of excess hematite and rutile. The dielectric constant decreased with frequency and temperature for both compacts and bulk samples. Higher values were determined for bulk samples also reflecting the influence of sample composition. Change in the dielectric loss also reflected the influence of sample composition showing one maximum at high frequencies for compacts, and two maxima at room temperature for bulk samples. Complex impedance was analyzed using equivalent circuits and showed in the case of compacts the influence of both grain and grain boundary components, while in the case of bulk samples the dominant influence of grain boundaries. The temperature dependence of the determined grain and grain boundary resistance for compacts and grain boundary resistance for bulk samples was analyzed using the adiabatic small polaron hopping model enabling determination of activation energies for conduction, while the temperature dependence of relaxation times enabled determination of activation energies for relaxation. Changes in electrical conductivity for compacts and bulk samples followed Jonscher’s power law. The change of the determined frequency constant with temperature showed that at elevated temperatures the quantum mechanical-tunneling model for the case of small polaron hopping explains the conduction mechanism occurring in both compacts and bulk samples.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-016-6125-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Activation energy ; Adiabatic flow ; Anatase ; Bulk sampling ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Compacts ; Composition ; Conduction heating ; Copper ; Dielectric loss ; Dielectric properties ; Electrical resistivity ; Equivalent circuits ; Grain boundaries ; Hematite ; High temperature ; Hopping conduction ; Impedance ; Materials Science ; Maxima ; Microstructure ; Optical and Electronic Materials ; Polarons ; Quantum mechanics ; Temperature ; Temperature dependence ; Titanium dioxide</subject><ispartof>Journal of materials science. Materials in electronics, 2017-03, Vol.28 (6), p.4796-4806</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-e84a75243469e647daa6df98285513b8e1e626e4d22fa292889bc6217f302ab73</citedby><cites>FETCH-LOGICAL-c316t-e84a75243469e647daa6df98285513b8e1e626e4d22fa292889bc6217f302ab73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-016-6125-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-016-6125-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Nikolic, M. V.</creatorcontrib><creatorcontrib>Sekulic, D. L.</creatorcontrib><creatorcontrib>Vasiljevic, Z. Z.</creatorcontrib><creatorcontrib>Lukovic, M. D.</creatorcontrib><creatorcontrib>Pavlovic, V. B.</creatorcontrib><creatorcontrib>Aleksic, O. S.</creatorcontrib><title>Dielectric properties, complex impedance and electrical conductivity of Fe2TiO5 nanopowder compacts and bulk samples at elevated temperatures</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>In this work we have investigated changes in dielectric properties, electrical conductivity and complex impedance of Fe 2 TiO 5 nanopowder compacts and bulk samples as a function of elevated temperature (room to 423 K compacts, to 443 K bulk samples), frequency (100 Hz–1 MHz) and composition (starting molar ratio of Fe 2 O 3 and TiO 2 1:1—PSB11 and 1:1.5—PSB115). XRD, SEM and TEM analysis of PSB11 and PSB115 powders obtained by a simple solid state process from starting hematite and anatase nanopowders confirmed the formation of nanostructured orthorhombic pseudobrookite with small amounts of excess hematite and rutile. The dielectric constant decreased with frequency and temperature for both compacts and bulk samples. Higher values were determined for bulk samples also reflecting the influence of sample composition. Change in the dielectric loss also reflected the influence of sample composition showing one maximum at high frequencies for compacts, and two maxima at room temperature for bulk samples. Complex impedance was analyzed using equivalent circuits and showed in the case of compacts the influence of both grain and grain boundary components, while in the case of bulk samples the dominant influence of grain boundaries. The temperature dependence of the determined grain and grain boundary resistance for compacts and grain boundary resistance for bulk samples was analyzed using the adiabatic small polaron hopping model enabling determination of activation energies for conduction, while the temperature dependence of relaxation times enabled determination of activation energies for relaxation. Changes in electrical conductivity for compacts and bulk samples followed Jonscher’s power law. The change of the determined frequency constant with temperature showed that at elevated temperatures the quantum mechanical-tunneling model for the case of small polaron hopping explains the conduction mechanism occurring in both compacts and bulk samples.</description><subject>Activation energy</subject><subject>Adiabatic flow</subject><subject>Anatase</subject><subject>Bulk sampling</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Compacts</subject><subject>Composition</subject><subject>Conduction heating</subject><subject>Copper</subject><subject>Dielectric loss</subject><subject>Dielectric properties</subject><subject>Electrical resistivity</subject><subject>Equivalent circuits</subject><subject>Grain boundaries</subject><subject>Hematite</subject><subject>High temperature</subject><subject>Hopping conduction</subject><subject>Impedance</subject><subject>Materials Science</subject><subject>Maxima</subject><subject>Microstructure</subject><subject>Optical and Electronic Materials</subject><subject>Polarons</subject><subject>Quantum mechanics</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Titanium dioxide</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LxDAQhoMouH78AG8Br1aTaZKmR1ldFRb2ouAtZNOpVLttTdJVf4T_2ayrePI0MLzvM8xDyAln55yx4iJwpqXIGFeZ4iAztUMmXBZ5JjQ87pIJK2WRCQmwTw5CeGaMKZHrCfm8arBFF33j6OD7AX1sMJxR16-GFt9psxqwsp1DaruK_kZtmwJdNbrYrJv4QfuazhDum4Wkne36oX-r0H8zrIvhu7oc2xca7IaaFnGDWtuIFY2YTngbR4_hiOzVtg14_DMPycPs-n56m80XN3fTy3nmcq5ihlrYQoLIhSpRiaKyVlV1qUFLyfOlRo4KFIoKoLZQgtbl0ingRZ0zsMsiPySnW256-XXEEM1zP_ounTSQPKoChNIpxbcp5_sQPNZm8M3K-g_DmdlYN1vrJlk3G-tGpQ5sOyFluyf0f-T_S187XIc7</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Nikolic, M. V.</creator><creator>Sekulic, D. L.</creator><creator>Vasiljevic, Z. Z.</creator><creator>Lukovic, M. D.</creator><creator>Pavlovic, V. B.</creator><creator>Aleksic, O. S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20170301</creationdate><title>Dielectric properties, complex impedance and electrical conductivity of Fe2TiO5 nanopowder compacts and bulk samples at elevated temperatures</title><author>Nikolic, M. V. ; Sekulic, D. L. ; Vasiljevic, Z. Z. ; Lukovic, M. D. ; Pavlovic, V. B. ; Aleksic, O. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e84a75243469e647daa6df98285513b8e1e626e4d22fa292889bc6217f302ab73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activation energy</topic><topic>Adiabatic flow</topic><topic>Anatase</topic><topic>Bulk sampling</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Compacts</topic><topic>Composition</topic><topic>Conduction heating</topic><topic>Copper</topic><topic>Dielectric loss</topic><topic>Dielectric properties</topic><topic>Electrical resistivity</topic><topic>Equivalent circuits</topic><topic>Grain boundaries</topic><topic>Hematite</topic><topic>High temperature</topic><topic>Hopping conduction</topic><topic>Impedance</topic><topic>Materials Science</topic><topic>Maxima</topic><topic>Microstructure</topic><topic>Optical and Electronic Materials</topic><topic>Polarons</topic><topic>Quantum mechanics</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nikolic, M. V.</creatorcontrib><creatorcontrib>Sekulic, D. L.</creatorcontrib><creatorcontrib>Vasiljevic, Z. Z.</creatorcontrib><creatorcontrib>Lukovic, M. D.</creatorcontrib><creatorcontrib>Pavlovic, V. B.</creatorcontrib><creatorcontrib>Aleksic, O. S.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nikolic, M. V.</au><au>Sekulic, D. L.</au><au>Vasiljevic, Z. Z.</au><au>Lukovic, M. D.</au><au>Pavlovic, V. B.</au><au>Aleksic, O. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dielectric properties, complex impedance and electrical conductivity of Fe2TiO5 nanopowder compacts and bulk samples at elevated temperatures</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>28</volume><issue>6</issue><spage>4796</spage><epage>4806</epage><pages>4796-4806</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>In this work we have investigated changes in dielectric properties, electrical conductivity and complex impedance of Fe 2 TiO 5 nanopowder compacts and bulk samples as a function of elevated temperature (room to 423 K compacts, to 443 K bulk samples), frequency (100 Hz–1 MHz) and composition (starting molar ratio of Fe 2 O 3 and TiO 2 1:1—PSB11 and 1:1.5—PSB115). XRD, SEM and TEM analysis of PSB11 and PSB115 powders obtained by a simple solid state process from starting hematite and anatase nanopowders confirmed the formation of nanostructured orthorhombic pseudobrookite with small amounts of excess hematite and rutile. The dielectric constant decreased with frequency and temperature for both compacts and bulk samples. Higher values were determined for bulk samples also reflecting the influence of sample composition. Change in the dielectric loss also reflected the influence of sample composition showing one maximum at high frequencies for compacts, and two maxima at room temperature for bulk samples. Complex impedance was analyzed using equivalent circuits and showed in the case of compacts the influence of both grain and grain boundary components, while in the case of bulk samples the dominant influence of grain boundaries. The temperature dependence of the determined grain and grain boundary resistance for compacts and grain boundary resistance for bulk samples was analyzed using the adiabatic small polaron hopping model enabling determination of activation energies for conduction, while the temperature dependence of relaxation times enabled determination of activation energies for relaxation. Changes in electrical conductivity for compacts and bulk samples followed Jonscher’s power law. The change of the determined frequency constant with temperature showed that at elevated temperatures the quantum mechanical-tunneling model for the case of small polaron hopping explains the conduction mechanism occurring in both compacts and bulk samples.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-016-6125-6</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2017-03, Vol.28 (6), p.4796-4806
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2085672468
source Springer Nature - Complete Springer Journals
subjects Activation energy
Adiabatic flow
Anatase
Bulk sampling
Characterization and Evaluation of Materials
Chemistry and Materials Science
Compacts
Composition
Conduction heating
Copper
Dielectric loss
Dielectric properties
Electrical resistivity
Equivalent circuits
Grain boundaries
Hematite
High temperature
Hopping conduction
Impedance
Materials Science
Maxima
Microstructure
Optical and Electronic Materials
Polarons
Quantum mechanics
Temperature
Temperature dependence
Titanium dioxide
title Dielectric properties, complex impedance and electrical conductivity of Fe2TiO5 nanopowder compacts and bulk samples at elevated temperatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T00%3A46%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dielectric%20properties,%20complex%20impedance%20and%20electrical%20conductivity%20of%20Fe2TiO5%20nanopowder%20compacts%20and%20bulk%20samples%20at%20elevated%20temperatures&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Nikolic,%20M.%20V.&rft.date=2017-03-01&rft.volume=28&rft.issue=6&rft.spage=4796&rft.epage=4806&rft.pages=4796-4806&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-016-6125-6&rft_dat=%3Cproquest_cross%3E2085672468%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085672468&rft_id=info:pmid/&rfr_iscdi=true