A method for getting a finite α in the IR region from an all-order beta function
The analytical method of the QCD running coupling constant is extended to a model with an all-order beta function which is inspired by the famous Novikov–Shifman–Vainshtein–Zakharov beta function of N = 1 supersymmetric gauge theories. In the approach presented here, the running coupling is determin...
Gespeichert in:
Veröffentlicht in: | The European physical journal. C, Particles and fields Particles and fields, 2017-11, Vol.77 (11), p.1-5 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | 11 |
container_start_page | 1 |
container_title | The European physical journal. C, Particles and fields |
container_volume | 77 |
creator | Zheng, Zhi-Yuan Zhou, Gao-Liang |
description | The analytical method of the QCD running coupling constant is extended to a model with an all-order beta function which is inspired by the famous Novikov–Shifman–Vainshtein–Zakharov beta function of
N
=
1
supersymmetric gauge theories. In the approach presented here, the running coupling is determined by a transcendental equation with non-elementary integral of the running scale
μ
. In our approach
α
an
(
0
)
, which reads 0.30642, does not rely on any dimensional parameters. This is in accordance with results in the literature on the analytical method of the QCD running coupling constant. The new “analytically improved” running coupling constant is also compatible with the property of asymptotic freedom. |
doi_str_mv | 10.1140/epjc/s10052-017-5384-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2085602459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085602459</sourcerecordid><originalsourceid>FETCH-LOGICAL-p231t-d29e1a914c759816fec4c38a20f73ca85ca6af81b21b69caeb57caa15f9146f83</originalsourceid><addsrcrecordid>eNpFkN1KAzEQhYMoWKuvIAGvYzP52-xlKf4UCqLodcimSbul3azZ7IP5Ij6TKRW9msPMmRnOh9At0HsAQWe-37nZAJRKRihURHItiDpDExC8iNI-_9NCXKKrYdhRSpmgeoJe5_jg8zaucYgJb3zObbfBFoe2a7PH31-47XDeerx8w8lv2tjhkOIB2w7b_Z7EtPYJNz6XjbFzucyv0UWw-8Hf_NYp-nh8eF88k9XL03IxX5GecchkzWoPtgbhKllrUME74bi2jIaKO6uls8oGDQ2DRtXO-kZWzlqQoeyooPkU3Z3u9il-jn7IZhfH1JWXhlEtVQko6-KqTq6hTyWZT_8uoObIzxz5mRM_U_iZIz-j-A_GIGTs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085602459</pqid></control><display><type>article</type><title>A method for getting a finite α in the IR region from an all-order beta function</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerNature Journals</source><source>Springer Nature OA/Free Journals</source><creator>Zheng, Zhi-Yuan ; Zhou, Gao-Liang</creator><creatorcontrib>Zheng, Zhi-Yuan ; Zhou, Gao-Liang</creatorcontrib><description>The analytical method of the QCD running coupling constant is extended to a model with an all-order beta function which is inspired by the famous Novikov–Shifman–Vainshtein–Zakharov beta function of
N
=
1
supersymmetric gauge theories. In the approach presented here, the running coupling is determined by a transcendental equation with non-elementary integral of the running scale
μ
. In our approach
α
an
(
0
)
, which reads 0.30642, does not rely on any dimensional parameters. This is in accordance with results in the literature on the analytical method of the QCD running coupling constant. The new “analytically improved” running coupling constant is also compatible with the property of asymptotic freedom.</description><identifier>ISSN: 1434-6044</identifier><identifier>EISSN: 1434-6052</identifier><identifier>DOI: 10.1140/epjc/s10052-017-5384-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Astronomy ; Astrophysics and Cosmology ; Asymptotic properties ; Coupling ; Elementary Particles ; Hadrons ; Heavy Ions ; Measurement Science and Instrumentation ; Nuclear Energy ; Nuclear Physics ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Regular Article - Theoretical Physics ; String Theory ; Supersymmetry</subject><ispartof>The European physical journal. C, Particles and fields, 2017-11, Vol.77 (11), p.1-5</ispartof><rights>The Author(s) 2017</rights><rights>The European Physical Journal C is a copyright of Springer, (2017). All Rights Reserved. © 2017. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9867-0798</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjc/s10052-017-5384-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1140/epjc/s10052-017-5384-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,866,27933,27934,41129,41497,42198,42566,51328,51585</link.rule.ids></links><search><creatorcontrib>Zheng, Zhi-Yuan</creatorcontrib><creatorcontrib>Zhou, Gao-Liang</creatorcontrib><title>A method for getting a finite α in the IR region from an all-order beta function</title><title>The European physical journal. C, Particles and fields</title><addtitle>Eur. Phys. J. C</addtitle><description>The analytical method of the QCD running coupling constant is extended to a model with an all-order beta function which is inspired by the famous Novikov–Shifman–Vainshtein–Zakharov beta function of
N
=
1
supersymmetric gauge theories. In the approach presented here, the running coupling is determined by a transcendental equation with non-elementary integral of the running scale
μ
. In our approach
α
an
(
0
)
, which reads 0.30642, does not rely on any dimensional parameters. This is in accordance with results in the literature on the analytical method of the QCD running coupling constant. The new “analytically improved” running coupling constant is also compatible with the property of asymptotic freedom.</description><subject>Astronomy</subject><subject>Astrophysics and Cosmology</subject><subject>Asymptotic properties</subject><subject>Coupling</subject><subject>Elementary Particles</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Measurement Science and Instrumentation</subject><subject>Nuclear Energy</subject><subject>Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Regular Article - Theoretical Physics</subject><subject>String Theory</subject><subject>Supersymmetry</subject><issn>1434-6044</issn><issn>1434-6052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpFkN1KAzEQhYMoWKuvIAGvYzP52-xlKf4UCqLodcimSbul3azZ7IP5Ij6TKRW9msPMmRnOh9At0HsAQWe-37nZAJRKRihURHItiDpDExC8iNI-_9NCXKKrYdhRSpmgeoJe5_jg8zaucYgJb3zObbfBFoe2a7PH31-47XDeerx8w8lv2tjhkOIB2w7b_Z7EtPYJNz6XjbFzucyv0UWw-8Hf_NYp-nh8eF88k9XL03IxX5GecchkzWoPtgbhKllrUME74bi2jIaKO6uls8oGDQ2DRtXO-kZWzlqQoeyooPkU3Z3u9il-jn7IZhfH1JWXhlEtVQko6-KqTq6hTyWZT_8uoObIzxz5mRM_U_iZIz-j-A_GIGTs</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Zheng, Zhi-Yuan</creator><creator>Zhou, Gao-Liang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-9867-0798</orcidid></search><sort><creationdate>20171101</creationdate><title>A method for getting a finite α in the IR region from an all-order beta function</title><author>Zheng, Zhi-Yuan ; Zhou, Gao-Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p231t-d29e1a914c759816fec4c38a20f73ca85ca6af81b21b69caeb57caa15f9146f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Astronomy</topic><topic>Astrophysics and Cosmology</topic><topic>Asymptotic properties</topic><topic>Coupling</topic><topic>Elementary Particles</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Measurement Science and Instrumentation</topic><topic>Nuclear Energy</topic><topic>Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Regular Article - Theoretical Physics</topic><topic>String Theory</topic><topic>Supersymmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Zhi-Yuan</creatorcontrib><creatorcontrib>Zhou, Gao-Liang</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The European physical journal. C, Particles and fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Zhi-Yuan</au><au>Zhou, Gao-Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A method for getting a finite α in the IR region from an all-order beta function</atitle><jtitle>The European physical journal. C, Particles and fields</jtitle><stitle>Eur. Phys. J. C</stitle><date>2017-11-01</date><risdate>2017</risdate><volume>77</volume><issue>11</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1434-6044</issn><eissn>1434-6052</eissn><abstract>The analytical method of the QCD running coupling constant is extended to a model with an all-order beta function which is inspired by the famous Novikov–Shifman–Vainshtein–Zakharov beta function of
N
=
1
supersymmetric gauge theories. In the approach presented here, the running coupling is determined by a transcendental equation with non-elementary integral of the running scale
μ
. In our approach
α
an
(
0
)
, which reads 0.30642, does not rely on any dimensional parameters. This is in accordance with results in the literature on the analytical method of the QCD running coupling constant. The new “analytically improved” running coupling constant is also compatible with the property of asymptotic freedom.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjc/s10052-017-5384-6</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9867-0798</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-6044 |
ispartof | The European physical journal. C, Particles and fields, 2017-11, Vol.77 (11), p.1-5 |
issn | 1434-6044 1434-6052 |
language | eng |
recordid | cdi_proquest_journals_2085602459 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerNature Journals; Springer Nature OA/Free Journals |
subjects | Astronomy Astrophysics and Cosmology Asymptotic properties Coupling Elementary Particles Hadrons Heavy Ions Measurement Science and Instrumentation Nuclear Energy Nuclear Physics Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Regular Article - Theoretical Physics String Theory Supersymmetry |
title | A method for getting a finite α in the IR region from an all-order beta function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T22%3A00%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20method%20for%20getting%20a%20finite%20%CE%B1%20in%20the%20IR%20region%20from%20an%20all-order%20beta%20function&rft.jtitle=The%20European%20physical%20journal.%20C,%20Particles%20and%20fields&rft.au=Zheng,%20Zhi-Yuan&rft.date=2017-11-01&rft.volume=77&rft.issue=11&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1434-6044&rft.eissn=1434-6052&rft_id=info:doi/10.1140/epjc/s10052-017-5384-6&rft_dat=%3Cproquest_sprin%3E2085602459%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085602459&rft_id=info:pmid/&rfr_iscdi=true |