2D and 3D shape retrieval using skeleton filling rate

As an increasing number of digital images are generated, a demand for an efficient and effective image retrieval mechanisms grows. In this work, we present a new skeleton-based algorithm for 2D and 3D shape retrieval. The algorithm starts by drawing circles (spheres for 3D) of increasing radius arou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2017-03, Vol.76 (6), p.7823-7848
Hauptverfasser: Sirin, Yahya, Demirci, M. Fatih
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7848
container_issue 6
container_start_page 7823
container_title Multimedia tools and applications
container_volume 76
creator Sirin, Yahya
Demirci, M. Fatih
description As an increasing number of digital images are generated, a demand for an efficient and effective image retrieval mechanisms grows. In this work, we present a new skeleton-based algorithm for 2D and 3D shape retrieval. The algorithm starts by drawing circles (spheres for 3D) of increasing radius around skeletons. Since each skeleton corresponds to the center of a maximally inscribed circle (sphere), this process results in circles (spheres) that are partially inside the shape. Computing the ratio between pixels that lie within the shape and the total number of pixels allows us to distinguish shapes with similar skeletons. Experimental evaluation of the proposed approach including a comprehensive comparison with the previous techniques demonstrates both effectiveness and robustness of our algorithm for shape retrieval using several 2D and 3D datasets.
doi_str_mv 10.1007/s11042-016-3422-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2085589771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085589771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-105d6054b053b2ec518b5b7305808f0ffaf17b852b19b0c0c6ebf12e96ea57c53</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Bz9GZpNN0j7LrP1jwoueQdJO1a23XpBX89map4MnTDMPvveE9xi4RrhFA3yREKKQALIUqpBTyiM2QtBJaSzzOu6pAaAI8ZWcp7SCDJIsZI7nitttwteLpze49j36Ijf-yLR9T0215evetH_qOh6ZtD4doB3_OToJtk7_4nXP2en_3snwU6-eHp-XtWtQKy0Eg0KYEKhyQctLXhJUjpxVQBVWAEGxA7SqSDhcOaqhL7wJKvyi9JV2TmrOryXcf-8_Rp8Hs-jF2-aWRUBFVC60xUzhRdexTij6YfWw-bPw2CObQjpnaMTm0ObRjZNbISZMy2219_HP-X_QD6qVlFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085589771</pqid></control><display><type>article</type><title>2D and 3D shape retrieval using skeleton filling rate</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sirin, Yahya ; Demirci, M. Fatih</creator><creatorcontrib>Sirin, Yahya ; Demirci, M. Fatih</creatorcontrib><description>As an increasing number of digital images are generated, a demand for an efficient and effective image retrieval mechanisms grows. In this work, we present a new skeleton-based algorithm for 2D and 3D shape retrieval. The algorithm starts by drawing circles (spheres for 3D) of increasing radius around skeletons. Since each skeleton corresponds to the center of a maximally inscribed circle (sphere), this process results in circles (spheres) that are partially inside the shape. Computing the ratio between pixels that lie within the shape and the total number of pixels allows us to distinguish shapes with similar skeletons. Experimental evaluation of the proposed approach including a comprehensive comparison with the previous techniques demonstrates both effectiveness and robustness of our algorithm for shape retrieval using several 2D and 3D datasets.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-016-3422-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Circles (geometry) ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Digital imaging ; Image management ; Image retrieval ; Multimedia Information Systems ; Pixels ; Shape recognition ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2017-03, Vol.76 (6), p.7823-7848</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Multimedia Tools and Applications is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-105d6054b053b2ec518b5b7305808f0ffaf17b852b19b0c0c6ebf12e96ea57c53</citedby><cites>FETCH-LOGICAL-c316t-105d6054b053b2ec518b5b7305808f0ffaf17b852b19b0c0c6ebf12e96ea57c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-016-3422-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-016-3422-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sirin, Yahya</creatorcontrib><creatorcontrib>Demirci, M. Fatih</creatorcontrib><title>2D and 3D shape retrieval using skeleton filling rate</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>As an increasing number of digital images are generated, a demand for an efficient and effective image retrieval mechanisms grows. In this work, we present a new skeleton-based algorithm for 2D and 3D shape retrieval. The algorithm starts by drawing circles (spheres for 3D) of increasing radius around skeletons. Since each skeleton corresponds to the center of a maximally inscribed circle (sphere), this process results in circles (spheres) that are partially inside the shape. Computing the ratio between pixels that lie within the shape and the total number of pixels allows us to distinguish shapes with similar skeletons. Experimental evaluation of the proposed approach including a comprehensive comparison with the previous techniques demonstrates both effectiveness and robustness of our algorithm for shape retrieval using several 2D and 3D datasets.</description><subject>Algorithms</subject><subject>Circles (geometry)</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Digital imaging</subject><subject>Image management</subject><subject>Image retrieval</subject><subject>Multimedia Information Systems</subject><subject>Pixels</subject><subject>Shape recognition</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG8Bz9GZpNN0j7LrP1jwoueQdJO1a23XpBX89map4MnTDMPvveE9xi4RrhFA3yREKKQALIUqpBTyiM2QtBJaSzzOu6pAaAI8ZWcp7SCDJIsZI7nitttwteLpze49j36Ijf-yLR9T0215evetH_qOh6ZtD4doB3_OToJtk7_4nXP2en_3snwU6-eHp-XtWtQKy0Eg0KYEKhyQctLXhJUjpxVQBVWAEGxA7SqSDhcOaqhL7wJKvyi9JV2TmrOryXcf-8_Rp8Hs-jF2-aWRUBFVC60xUzhRdexTij6YfWw-bPw2CObQjpnaMTm0ObRjZNbISZMy2219_HP-X_QD6qVlFA</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Sirin, Yahya</creator><creator>Demirci, M. Fatih</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20170301</creationdate><title>2D and 3D shape retrieval using skeleton filling rate</title><author>Sirin, Yahya ; Demirci, M. Fatih</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-105d6054b053b2ec518b5b7305808f0ffaf17b852b19b0c0c6ebf12e96ea57c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Circles (geometry)</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Digital imaging</topic><topic>Image management</topic><topic>Image retrieval</topic><topic>Multimedia Information Systems</topic><topic>Pixels</topic><topic>Shape recognition</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sirin, Yahya</creatorcontrib><creatorcontrib>Demirci, M. Fatih</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sirin, Yahya</au><au>Demirci, M. Fatih</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>2D and 3D shape retrieval using skeleton filling rate</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>76</volume><issue>6</issue><spage>7823</spage><epage>7848</epage><pages>7823-7848</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>As an increasing number of digital images are generated, a demand for an efficient and effective image retrieval mechanisms grows. In this work, we present a new skeleton-based algorithm for 2D and 3D shape retrieval. The algorithm starts by drawing circles (spheres for 3D) of increasing radius around skeletons. Since each skeleton corresponds to the center of a maximally inscribed circle (sphere), this process results in circles (spheres) that are partially inside the shape. Computing the ratio between pixels that lie within the shape and the total number of pixels allows us to distinguish shapes with similar skeletons. Experimental evaluation of the proposed approach including a comprehensive comparison with the previous techniques demonstrates both effectiveness and robustness of our algorithm for shape retrieval using several 2D and 3D datasets.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-016-3422-2</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2017-03, Vol.76 (6), p.7823-7848
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2085589771
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Circles (geometry)
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Digital imaging
Image management
Image retrieval
Multimedia Information Systems
Pixels
Shape recognition
Special Purpose and Application-Based Systems
title 2D and 3D shape retrieval using skeleton filling rate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A56%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=2D%20and%203D%20shape%20retrieval%20using%20skeleton%20filling%20rate&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Sirin,%20Yahya&rft.date=2017-03-01&rft.volume=76&rft.issue=6&rft.spage=7823&rft.epage=7848&rft.pages=7823-7848&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-016-3422-2&rft_dat=%3Cproquest_cross%3E2085589771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085589771&rft_id=info:pmid/&rfr_iscdi=true