2D and 3D shape retrieval using skeleton filling rate
As an increasing number of digital images are generated, a demand for an efficient and effective image retrieval mechanisms grows. In this work, we present a new skeleton-based algorithm for 2D and 3D shape retrieval. The algorithm starts by drawing circles (spheres for 3D) of increasing radius arou...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2017-03, Vol.76 (6), p.7823-7848 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7848 |
---|---|
container_issue | 6 |
container_start_page | 7823 |
container_title | Multimedia tools and applications |
container_volume | 76 |
creator | Sirin, Yahya Demirci, M. Fatih |
description | As an increasing number of digital images are generated, a demand for an efficient and effective image retrieval mechanisms grows. In this work, we present a new skeleton-based algorithm for 2D and 3D shape retrieval. The algorithm starts by drawing circles (spheres for 3D) of increasing radius around skeletons. Since each skeleton corresponds to the center of a maximally inscribed circle (sphere), this process results in circles (spheres) that are partially inside the shape. Computing the ratio between pixels that lie within the shape and the total number of pixels allows us to distinguish shapes with similar skeletons. Experimental evaluation of the proposed approach including a comprehensive comparison with the previous techniques demonstrates both effectiveness and robustness of our algorithm for shape retrieval using several 2D and 3D datasets. |
doi_str_mv | 10.1007/s11042-016-3422-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2085589771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085589771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-105d6054b053b2ec518b5b7305808f0ffaf17b852b19b0c0c6ebf12e96ea57c53</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Bz9GZpNN0j7LrP1jwoueQdJO1a23XpBX89map4MnTDMPvveE9xi4RrhFA3yREKKQALIUqpBTyiM2QtBJaSzzOu6pAaAI8ZWcp7SCDJIsZI7nitttwteLpze49j36Ijf-yLR9T0215evetH_qOh6ZtD4doB3_OToJtk7_4nXP2en_3snwU6-eHp-XtWtQKy0Eg0KYEKhyQctLXhJUjpxVQBVWAEGxA7SqSDhcOaqhL7wJKvyi9JV2TmrOryXcf-8_Rp8Hs-jF2-aWRUBFVC60xUzhRdexTij6YfWw-bPw2CObQjpnaMTm0ObRjZNbISZMy2219_HP-X_QD6qVlFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085589771</pqid></control><display><type>article</type><title>2D and 3D shape retrieval using skeleton filling rate</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sirin, Yahya ; Demirci, M. Fatih</creator><creatorcontrib>Sirin, Yahya ; Demirci, M. Fatih</creatorcontrib><description>As an increasing number of digital images are generated, a demand for an efficient and effective image retrieval mechanisms grows. In this work, we present a new skeleton-based algorithm for 2D and 3D shape retrieval. The algorithm starts by drawing circles (spheres for 3D) of increasing radius around skeletons. Since each skeleton corresponds to the center of a maximally inscribed circle (sphere), this process results in circles (spheres) that are partially inside the shape. Computing the ratio between pixels that lie within the shape and the total number of pixels allows us to distinguish shapes with similar skeletons. Experimental evaluation of the proposed approach including a comprehensive comparison with the previous techniques demonstrates both effectiveness and robustness of our algorithm for shape retrieval using several 2D and 3D datasets.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-016-3422-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Circles (geometry) ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Digital imaging ; Image management ; Image retrieval ; Multimedia Information Systems ; Pixels ; Shape recognition ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2017-03, Vol.76 (6), p.7823-7848</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Multimedia Tools and Applications is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-105d6054b053b2ec518b5b7305808f0ffaf17b852b19b0c0c6ebf12e96ea57c53</citedby><cites>FETCH-LOGICAL-c316t-105d6054b053b2ec518b5b7305808f0ffaf17b852b19b0c0c6ebf12e96ea57c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-016-3422-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-016-3422-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sirin, Yahya</creatorcontrib><creatorcontrib>Demirci, M. Fatih</creatorcontrib><title>2D and 3D shape retrieval using skeleton filling rate</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>As an increasing number of digital images are generated, a demand for an efficient and effective image retrieval mechanisms grows. In this work, we present a new skeleton-based algorithm for 2D and 3D shape retrieval. The algorithm starts by drawing circles (spheres for 3D) of increasing radius around skeletons. Since each skeleton corresponds to the center of a maximally inscribed circle (sphere), this process results in circles (spheres) that are partially inside the shape. Computing the ratio between pixels that lie within the shape and the total number of pixels allows us to distinguish shapes with similar skeletons. Experimental evaluation of the proposed approach including a comprehensive comparison with the previous techniques demonstrates both effectiveness and robustness of our algorithm for shape retrieval using several 2D and 3D datasets.</description><subject>Algorithms</subject><subject>Circles (geometry)</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Digital imaging</subject><subject>Image management</subject><subject>Image retrieval</subject><subject>Multimedia Information Systems</subject><subject>Pixels</subject><subject>Shape recognition</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG8Bz9GZpNN0j7LrP1jwoueQdJO1a23XpBX89map4MnTDMPvveE9xi4RrhFA3yREKKQALIUqpBTyiM2QtBJaSzzOu6pAaAI8ZWcp7SCDJIsZI7nitttwteLpze49j36Ijf-yLR9T0215evetH_qOh6ZtD4doB3_OToJtk7_4nXP2en_3snwU6-eHp-XtWtQKy0Eg0KYEKhyQctLXhJUjpxVQBVWAEGxA7SqSDhcOaqhL7wJKvyi9JV2TmrOryXcf-8_Rp8Hs-jF2-aWRUBFVC60xUzhRdexTij6YfWw-bPw2CObQjpnaMTm0ObRjZNbISZMy2219_HP-X_QD6qVlFA</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Sirin, Yahya</creator><creator>Demirci, M. Fatih</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20170301</creationdate><title>2D and 3D shape retrieval using skeleton filling rate</title><author>Sirin, Yahya ; Demirci, M. Fatih</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-105d6054b053b2ec518b5b7305808f0ffaf17b852b19b0c0c6ebf12e96ea57c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Circles (geometry)</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Digital imaging</topic><topic>Image management</topic><topic>Image retrieval</topic><topic>Multimedia Information Systems</topic><topic>Pixels</topic><topic>Shape recognition</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sirin, Yahya</creatorcontrib><creatorcontrib>Demirci, M. Fatih</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sirin, Yahya</au><au>Demirci, M. Fatih</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>2D and 3D shape retrieval using skeleton filling rate</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>76</volume><issue>6</issue><spage>7823</spage><epage>7848</epage><pages>7823-7848</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>As an increasing number of digital images are generated, a demand for an efficient and effective image retrieval mechanisms grows. In this work, we present a new skeleton-based algorithm for 2D and 3D shape retrieval. The algorithm starts by drawing circles (spheres for 3D) of increasing radius around skeletons. Since each skeleton corresponds to the center of a maximally inscribed circle (sphere), this process results in circles (spheres) that are partially inside the shape. Computing the ratio between pixels that lie within the shape and the total number of pixels allows us to distinguish shapes with similar skeletons. Experimental evaluation of the proposed approach including a comprehensive comparison with the previous techniques demonstrates both effectiveness and robustness of our algorithm for shape retrieval using several 2D and 3D datasets.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-016-3422-2</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2017-03, Vol.76 (6), p.7823-7848 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2085589771 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Circles (geometry) Computer Communication Networks Computer Science Data Structures and Information Theory Digital imaging Image management Image retrieval Multimedia Information Systems Pixels Shape recognition Special Purpose and Application-Based Systems |
title | 2D and 3D shape retrieval using skeleton filling rate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A56%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=2D%20and%203D%20shape%20retrieval%20using%20skeleton%20filling%20rate&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Sirin,%20Yahya&rft.date=2017-03-01&rft.volume=76&rft.issue=6&rft.spage=7823&rft.epage=7848&rft.pages=7823-7848&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-016-3422-2&rft_dat=%3Cproquest_cross%3E2085589771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085589771&rft_id=info:pmid/&rfr_iscdi=true |