Adsorption isotherm models and error analysis for single and binary adsorption of Cd(II) and Zn(II) using leonardite as adsorbent

Leonardite, a by-product from coal mines, was applied to adsorb Cd(II) and Zn(II) from aqueous solutions. Individual and simultaneous adsorptions of the two metal ions were investigated. In a single-component adsorption system, Langmuir and Freundlich isotherms were fitted to the adsorption data. Li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental earth sciences 2017-11, Vol.76 (22), p.1-11, Article 777
Hauptverfasser: Terdputtakun, Apiradee, Arqueropanyo, Orn-anong, Sooksamiti, Ponlayuth, Janhom, Sorapong, Naksata, Wimol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 22
container_start_page 1
container_title Environmental earth sciences
container_volume 76
creator Terdputtakun, Apiradee
Arqueropanyo, Orn-anong
Sooksamiti, Ponlayuth
Janhom, Sorapong
Naksata, Wimol
description Leonardite, a by-product from coal mines, was applied to adsorb Cd(II) and Zn(II) from aqueous solutions. Individual and simultaneous adsorptions of the two metal ions were investigated. In a single-component adsorption system, Langmuir and Freundlich isotherms were fitted to the adsorption data. Linear and nonlinear regression methods were used for the assessment of the optimum adsorption isotherm. Error functions including root-mean-square error, sum of the squares of the errors, mean absolute percentage error, Marquardt’s percent standard deviation (MPSD), and Chi-square were applied in the nonlinear regression. The most suitable model for the adsorption of Cd(II) and Zn(II) in the single system is the Freundlich isotherm. The isotherm parameters calculated by MPSD provided the lowest sum of normalized error (SNE) value. The adsorption capacity was found to be 23.89 mg/g for Cd(II) and 16.86 mg/g for Zn(II). It was observed that the adsorption of Cd(II) on leonardite is greater than that of Zn(II). For binary component adsorption systems, Cd(II) and Zn(II) showed antagonistic behavior. The presence of the other metal ions could decrease the amount of metal adsorbed. Binary adsorption of Cd(II) and Zn(II) was tested with regard to four multi-component isotherms: Extended Langmuir, Modified Langmuir, Sheindorf–Rebuhn–Sheintuch, and Extended Freundlich. The Extended Freundlich isotherm proved to be a good fit for the experimental data.
doi_str_mv 10.1007/s12665-017-7110-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2085584248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085584248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-c15a44cae9fdac41cb5ab4faa8f2e6b558d81b44c8688814a89eb3ef81f4db693</originalsourceid><addsrcrecordid>eNp1kD9PwzAQxS0EElXpB2CzxAJDwJc4rjNWFX8qVWKBhcWyY7ukSuPiS4eOfHPcBtEJL36ne78n3SPkGtg9MDZ9QMiFKDMG02wKwLL9GRmBFCITeVWd_2nJLskEcc3SK6ComBiR75nFELd9EzraYOg_XdzQTbCuRao7S12MISal2z02SH0asOlWrTtuTdPpuKf6lBE8ndvbxeLuuP_ojnJ3QGjrQnLbpk8sDoxxXX9FLrxu0U1-_zF5f3p8m79ky9fnxXy2zOoCRJ_VUGrOa-0qb3XNoTalNtxrLX3uhClLaSWY5JBCSglcy8qZwnkJnlsjqmJMbobcbQxfO4e9WoddTIehyplMPM-5TC4YXHUMiNF5tY3NJh2pgKlD2WooW6Wy1aFstU9MPjCYvN3KxVPy_9APxJSEIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085584248</pqid></control><display><type>article</type><title>Adsorption isotherm models and error analysis for single and binary adsorption of Cd(II) and Zn(II) using leonardite as adsorbent</title><source>SpringerLink Journals - AutoHoldings</source><creator>Terdputtakun, Apiradee ; Arqueropanyo, Orn-anong ; Sooksamiti, Ponlayuth ; Janhom, Sorapong ; Naksata, Wimol</creator><creatorcontrib>Terdputtakun, Apiradee ; Arqueropanyo, Orn-anong ; Sooksamiti, Ponlayuth ; Janhom, Sorapong ; Naksata, Wimol</creatorcontrib><description>Leonardite, a by-product from coal mines, was applied to adsorb Cd(II) and Zn(II) from aqueous solutions. Individual and simultaneous adsorptions of the two metal ions were investigated. In a single-component adsorption system, Langmuir and Freundlich isotherms were fitted to the adsorption data. Linear and nonlinear regression methods were used for the assessment of the optimum adsorption isotherm. Error functions including root-mean-square error, sum of the squares of the errors, mean absolute percentage error, Marquardt’s percent standard deviation (MPSD), and Chi-square were applied in the nonlinear regression. The most suitable model for the adsorption of Cd(II) and Zn(II) in the single system is the Freundlich isotherm. The isotherm parameters calculated by MPSD provided the lowest sum of normalized error (SNE) value. The adsorption capacity was found to be 23.89 mg/g for Cd(II) and 16.86 mg/g for Zn(II). It was observed that the adsorption of Cd(II) on leonardite is greater than that of Zn(II). For binary component adsorption systems, Cd(II) and Zn(II) showed antagonistic behavior. The presence of the other metal ions could decrease the amount of metal adsorbed. Binary adsorption of Cd(II) and Zn(II) was tested with regard to four multi-component isotherms: Extended Langmuir, Modified Langmuir, Sheindorf–Rebuhn–Sheintuch, and Extended Freundlich. The Extended Freundlich isotherm proved to be a good fit for the experimental data.</description><identifier>ISSN: 1866-6280</identifier><identifier>EISSN: 1866-6299</identifier><identifier>DOI: 10.1007/s12665-017-7110-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adsorption ; Biogeosciences ; Cadmium ; Capacity ; Coal mines ; Coal mining ; Earth and Environmental Science ; Earth Sciences ; Environmental Science and Engineering ; Error analysis ; Error functions ; Geochemistry ; Geology ; Heavy metals ; Hydrology/Water Resources ; Isotherms ; Metal ions ; Original Article ; Regression analysis ; Regression models ; Solutions ; Sorption ; Terrestrial Pollution ; Zinc</subject><ispartof>Environmental earth sciences, 2017-11, Vol.76 (22), p.1-11, Article 777</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2017</rights><rights>Environmental Earth Sciences is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-c15a44cae9fdac41cb5ab4faa8f2e6b558d81b44c8688814a89eb3ef81f4db693</citedby><cites>FETCH-LOGICAL-c316t-c15a44cae9fdac41cb5ab4faa8f2e6b558d81b44c8688814a89eb3ef81f4db693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12665-017-7110-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12665-017-7110-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Terdputtakun, Apiradee</creatorcontrib><creatorcontrib>Arqueropanyo, Orn-anong</creatorcontrib><creatorcontrib>Sooksamiti, Ponlayuth</creatorcontrib><creatorcontrib>Janhom, Sorapong</creatorcontrib><creatorcontrib>Naksata, Wimol</creatorcontrib><title>Adsorption isotherm models and error analysis for single and binary adsorption of Cd(II) and Zn(II) using leonardite as adsorbent</title><title>Environmental earth sciences</title><addtitle>Environ Earth Sci</addtitle><description>Leonardite, a by-product from coal mines, was applied to adsorb Cd(II) and Zn(II) from aqueous solutions. Individual and simultaneous adsorptions of the two metal ions were investigated. In a single-component adsorption system, Langmuir and Freundlich isotherms were fitted to the adsorption data. Linear and nonlinear regression methods were used for the assessment of the optimum adsorption isotherm. Error functions including root-mean-square error, sum of the squares of the errors, mean absolute percentage error, Marquardt’s percent standard deviation (MPSD), and Chi-square were applied in the nonlinear regression. The most suitable model for the adsorption of Cd(II) and Zn(II) in the single system is the Freundlich isotherm. The isotherm parameters calculated by MPSD provided the lowest sum of normalized error (SNE) value. The adsorption capacity was found to be 23.89 mg/g for Cd(II) and 16.86 mg/g for Zn(II). It was observed that the adsorption of Cd(II) on leonardite is greater than that of Zn(II). For binary component adsorption systems, Cd(II) and Zn(II) showed antagonistic behavior. The presence of the other metal ions could decrease the amount of metal adsorbed. Binary adsorption of Cd(II) and Zn(II) was tested with regard to four multi-component isotherms: Extended Langmuir, Modified Langmuir, Sheindorf–Rebuhn–Sheintuch, and Extended Freundlich. The Extended Freundlich isotherm proved to be a good fit for the experimental data.</description><subject>Adsorption</subject><subject>Biogeosciences</subject><subject>Cadmium</subject><subject>Capacity</subject><subject>Coal mines</subject><subject>Coal mining</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environmental Science and Engineering</subject><subject>Error analysis</subject><subject>Error functions</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Heavy metals</subject><subject>Hydrology/Water Resources</subject><subject>Isotherms</subject><subject>Metal ions</subject><subject>Original Article</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Solutions</subject><subject>Sorption</subject><subject>Terrestrial Pollution</subject><subject>Zinc</subject><issn>1866-6280</issn><issn>1866-6299</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kD9PwzAQxS0EElXpB2CzxAJDwJc4rjNWFX8qVWKBhcWyY7ukSuPiS4eOfHPcBtEJL36ne78n3SPkGtg9MDZ9QMiFKDMG02wKwLL9GRmBFCITeVWd_2nJLskEcc3SK6ComBiR75nFELd9EzraYOg_XdzQTbCuRao7S12MISal2z02SH0asOlWrTtuTdPpuKf6lBE8ndvbxeLuuP_ojnJ3QGjrQnLbpk8sDoxxXX9FLrxu0U1-_zF5f3p8m79ky9fnxXy2zOoCRJ_VUGrOa-0qb3XNoTalNtxrLX3uhClLaSWY5JBCSglcy8qZwnkJnlsjqmJMbobcbQxfO4e9WoddTIehyplMPM-5TC4YXHUMiNF5tY3NJh2pgKlD2WooW6Wy1aFstU9MPjCYvN3KxVPy_9APxJSEIQ</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Terdputtakun, Apiradee</creator><creator>Arqueropanyo, Orn-anong</creator><creator>Sooksamiti, Ponlayuth</creator><creator>Janhom, Sorapong</creator><creator>Naksata, Wimol</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20171101</creationdate><title>Adsorption isotherm models and error analysis for single and binary adsorption of Cd(II) and Zn(II) using leonardite as adsorbent</title><author>Terdputtakun, Apiradee ; Arqueropanyo, Orn-anong ; Sooksamiti, Ponlayuth ; Janhom, Sorapong ; Naksata, Wimol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-c15a44cae9fdac41cb5ab4faa8f2e6b558d81b44c8688814a89eb3ef81f4db693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adsorption</topic><topic>Biogeosciences</topic><topic>Cadmium</topic><topic>Capacity</topic><topic>Coal mines</topic><topic>Coal mining</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environmental Science and Engineering</topic><topic>Error analysis</topic><topic>Error functions</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Heavy metals</topic><topic>Hydrology/Water Resources</topic><topic>Isotherms</topic><topic>Metal ions</topic><topic>Original Article</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Solutions</topic><topic>Sorption</topic><topic>Terrestrial Pollution</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Terdputtakun, Apiradee</creatorcontrib><creatorcontrib>Arqueropanyo, Orn-anong</creatorcontrib><creatorcontrib>Sooksamiti, Ponlayuth</creatorcontrib><creatorcontrib>Janhom, Sorapong</creatorcontrib><creatorcontrib>Naksata, Wimol</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Environmental earth sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Terdputtakun, Apiradee</au><au>Arqueropanyo, Orn-anong</au><au>Sooksamiti, Ponlayuth</au><au>Janhom, Sorapong</au><au>Naksata, Wimol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adsorption isotherm models and error analysis for single and binary adsorption of Cd(II) and Zn(II) using leonardite as adsorbent</atitle><jtitle>Environmental earth sciences</jtitle><stitle>Environ Earth Sci</stitle><date>2017-11-01</date><risdate>2017</risdate><volume>76</volume><issue>22</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><artnum>777</artnum><issn>1866-6280</issn><eissn>1866-6299</eissn><abstract>Leonardite, a by-product from coal mines, was applied to adsorb Cd(II) and Zn(II) from aqueous solutions. Individual and simultaneous adsorptions of the two metal ions were investigated. In a single-component adsorption system, Langmuir and Freundlich isotherms were fitted to the adsorption data. Linear and nonlinear regression methods were used for the assessment of the optimum adsorption isotherm. Error functions including root-mean-square error, sum of the squares of the errors, mean absolute percentage error, Marquardt’s percent standard deviation (MPSD), and Chi-square were applied in the nonlinear regression. The most suitable model for the adsorption of Cd(II) and Zn(II) in the single system is the Freundlich isotherm. The isotherm parameters calculated by MPSD provided the lowest sum of normalized error (SNE) value. The adsorption capacity was found to be 23.89 mg/g for Cd(II) and 16.86 mg/g for Zn(II). It was observed that the adsorption of Cd(II) on leonardite is greater than that of Zn(II). For binary component adsorption systems, Cd(II) and Zn(II) showed antagonistic behavior. The presence of the other metal ions could decrease the amount of metal adsorbed. Binary adsorption of Cd(II) and Zn(II) was tested with regard to four multi-component isotherms: Extended Langmuir, Modified Langmuir, Sheindorf–Rebuhn–Sheintuch, and Extended Freundlich. The Extended Freundlich isotherm proved to be a good fit for the experimental data.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12665-017-7110-y</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1866-6280
ispartof Environmental earth sciences, 2017-11, Vol.76 (22), p.1-11, Article 777
issn 1866-6280
1866-6299
language eng
recordid cdi_proquest_journals_2085584248
source SpringerLink Journals - AutoHoldings
subjects Adsorption
Biogeosciences
Cadmium
Capacity
Coal mines
Coal mining
Earth and Environmental Science
Earth Sciences
Environmental Science and Engineering
Error analysis
Error functions
Geochemistry
Geology
Heavy metals
Hydrology/Water Resources
Isotherms
Metal ions
Original Article
Regression analysis
Regression models
Solutions
Sorption
Terrestrial Pollution
Zinc
title Adsorption isotherm models and error analysis for single and binary adsorption of Cd(II) and Zn(II) using leonardite as adsorbent
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A16%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adsorption%20isotherm%20models%20and%20error%20analysis%20for%20single%20and%20binary%20adsorption%20of%20Cd(II)%20and%20Zn(II)%20using%20leonardite%20as%20adsorbent&rft.jtitle=Environmental%20earth%20sciences&rft.au=Terdputtakun,%20Apiradee&rft.date=2017-11-01&rft.volume=76&rft.issue=22&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.artnum=777&rft.issn=1866-6280&rft.eissn=1866-6299&rft_id=info:doi/10.1007/s12665-017-7110-y&rft_dat=%3Cproquest_cross%3E2085584248%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085584248&rft_id=info:pmid/&rfr_iscdi=true