Towards unsupervised physical activity recognition using smartphone accelerometers
The development of smartphones equipped with accelerometers gives a promising way for researchers to accurately recognize an individual’s physical activity in order to better understand the relationship between physical activity and health. However, a huge challenge for such sensor-based activity re...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2017-04, Vol.76 (8), p.10701-10719 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10719 |
---|---|
container_issue | 8 |
container_start_page | 10701 |
container_title | Multimedia tools and applications |
container_volume | 76 |
creator | Lu, Yonggang Wei, Ye Liu, Li Zhong, Jun Sun, Letian Liu, Ye |
description | The development of smartphones equipped with accelerometers gives a promising way for researchers to accurately recognize an individual’s physical activity in order to better understand the relationship between physical activity and health. However, a huge challenge for such sensor-based activity recognition task is the collection of annotated or labelled training data. In this work, we employ an unsupervised method for recognizing physical activities using smartphone accelerometers. Features are extracted from the raw acceleration data collected by smartphones, then an unsupervised classification method called MCODE is used for activity recognition. We evaluate the effectiveness of our method on three real-world datasets, i.e., a public dataset of daily living activities and two datasets of sports activities of race walking and basketball playing collected by ourselves, and we find our method outperforms other existing methods. The results show that our method is viable to recognize physical activities using smartphone accelerometers. |
doi_str_mv | 10.1007/s11042-015-3188-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2085583334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085583334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-81f9b8cdc578ac6de790a13e10ade537cdfcb53d3e2bac2af6d6d0ebf44350593</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuC52g-Npv0KMUvKAhSzyGbzLYp7WZNdiv7701ZwZOnmcPzvjM8CN1Sck8JkQ-JUlIyTKjAnCqFxzM0o0JyLCWj53nnimApCL1EVyntCKGVYOUMfazDt4kuFUObhg7i0SdwRbcdk7dmXxjb-6PvxyKCDZvW9z60xZB8uynSwcS-24YWMmVhDzEcoIeYrtFFY_YJbn7nHH0-P62Xr3j1_vK2fFxhyxXrsaLNolbWWSGVsZUDuSCGcqDEOBBcWtfYWnDHgdXGMtNUrnIE6qYsuSBiwefoburtYvgaIPV6F4bY5pOaESWE4pyXmaITZWNIKUKju-jz66OmRJ_U6Umdzur0SZ0ec4ZNmZTZdgPxr_n_0A9OhnTq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085583334</pqid></control><display><type>article</type><title>Towards unsupervised physical activity recognition using smartphone accelerometers</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lu, Yonggang ; Wei, Ye ; Liu, Li ; Zhong, Jun ; Sun, Letian ; Liu, Ye</creator><creatorcontrib>Lu, Yonggang ; Wei, Ye ; Liu, Li ; Zhong, Jun ; Sun, Letian ; Liu, Ye</creatorcontrib><description>The development of smartphones equipped with accelerometers gives a promising way for researchers to accurately recognize an individual’s physical activity in order to better understand the relationship between physical activity and health. However, a huge challenge for such sensor-based activity recognition task is the collection of annotated or labelled training data. In this work, we employ an unsupervised method for recognizing physical activities using smartphone accelerometers. Features are extracted from the raw acceleration data collected by smartphones, then an unsupervised classification method called MCODE is used for activity recognition. We evaluate the effectiveness of our method on three real-world datasets, i.e., a public dataset of daily living activities and two datasets of sports activities of race walking and basketball playing collected by ourselves, and we find our method outperforms other existing methods. The results show that our method is viable to recognize physical activities using smartphone accelerometers.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-015-3188-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accelerometers ; Activity recognition ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Datasets ; Exercise ; Feature extraction ; Multimedia Information Systems ; Smartphones ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2017-04, Vol.76 (8), p.10701-10719</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Multimedia Tools and Applications is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-81f9b8cdc578ac6de790a13e10ade537cdfcb53d3e2bac2af6d6d0ebf44350593</citedby><cites>FETCH-LOGICAL-c382t-81f9b8cdc578ac6de790a13e10ade537cdfcb53d3e2bac2af6d6d0ebf44350593</cites><orcidid>0000-0002-4776-5292</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-015-3188-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-015-3188-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lu, Yonggang</creatorcontrib><creatorcontrib>Wei, Ye</creatorcontrib><creatorcontrib>Liu, Li</creatorcontrib><creatorcontrib>Zhong, Jun</creatorcontrib><creatorcontrib>Sun, Letian</creatorcontrib><creatorcontrib>Liu, Ye</creatorcontrib><title>Towards unsupervised physical activity recognition using smartphone accelerometers</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>The development of smartphones equipped with accelerometers gives a promising way for researchers to accurately recognize an individual’s physical activity in order to better understand the relationship between physical activity and health. However, a huge challenge for such sensor-based activity recognition task is the collection of annotated or labelled training data. In this work, we employ an unsupervised method for recognizing physical activities using smartphone accelerometers. Features are extracted from the raw acceleration data collected by smartphones, then an unsupervised classification method called MCODE is used for activity recognition. We evaluate the effectiveness of our method on three real-world datasets, i.e., a public dataset of daily living activities and two datasets of sports activities of race walking and basketball playing collected by ourselves, and we find our method outperforms other existing methods. The results show that our method is viable to recognize physical activities using smartphone accelerometers.</description><subject>Accelerometers</subject><subject>Activity recognition</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Datasets</subject><subject>Exercise</subject><subject>Feature extraction</subject><subject>Multimedia Information Systems</subject><subject>Smartphones</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wNuC52g-Npv0KMUvKAhSzyGbzLYp7WZNdiv7701ZwZOnmcPzvjM8CN1Sck8JkQ-JUlIyTKjAnCqFxzM0o0JyLCWj53nnimApCL1EVyntCKGVYOUMfazDt4kuFUObhg7i0SdwRbcdk7dmXxjb-6PvxyKCDZvW9z60xZB8uynSwcS-24YWMmVhDzEcoIeYrtFFY_YJbn7nHH0-P62Xr3j1_vK2fFxhyxXrsaLNolbWWSGVsZUDuSCGcqDEOBBcWtfYWnDHgdXGMtNUrnIE6qYsuSBiwefoburtYvgaIPV6F4bY5pOaESWE4pyXmaITZWNIKUKju-jz66OmRJ_U6Umdzur0SZ0ec4ZNmZTZdgPxr_n_0A9OhnTq</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Lu, Yonggang</creator><creator>Wei, Ye</creator><creator>Liu, Li</creator><creator>Zhong, Jun</creator><creator>Sun, Letian</creator><creator>Liu, Ye</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-4776-5292</orcidid></search><sort><creationdate>20170401</creationdate><title>Towards unsupervised physical activity recognition using smartphone accelerometers</title><author>Lu, Yonggang ; Wei, Ye ; Liu, Li ; Zhong, Jun ; Sun, Letian ; Liu, Ye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-81f9b8cdc578ac6de790a13e10ade537cdfcb53d3e2bac2af6d6d0ebf44350593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accelerometers</topic><topic>Activity recognition</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Datasets</topic><topic>Exercise</topic><topic>Feature extraction</topic><topic>Multimedia Information Systems</topic><topic>Smartphones</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Yonggang</creatorcontrib><creatorcontrib>Wei, Ye</creatorcontrib><creatorcontrib>Liu, Li</creatorcontrib><creatorcontrib>Zhong, Jun</creatorcontrib><creatorcontrib>Sun, Letian</creatorcontrib><creatorcontrib>Liu, Ye</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Yonggang</au><au>Wei, Ye</au><au>Liu, Li</au><au>Zhong, Jun</au><au>Sun, Letian</au><au>Liu, Ye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards unsupervised physical activity recognition using smartphone accelerometers</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>76</volume><issue>8</issue><spage>10701</spage><epage>10719</epage><pages>10701-10719</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>The development of smartphones equipped with accelerometers gives a promising way for researchers to accurately recognize an individual’s physical activity in order to better understand the relationship between physical activity and health. However, a huge challenge for such sensor-based activity recognition task is the collection of annotated or labelled training data. In this work, we employ an unsupervised method for recognizing physical activities using smartphone accelerometers. Features are extracted from the raw acceleration data collected by smartphones, then an unsupervised classification method called MCODE is used for activity recognition. We evaluate the effectiveness of our method on three real-world datasets, i.e., a public dataset of daily living activities and two datasets of sports activities of race walking and basketball playing collected by ourselves, and we find our method outperforms other existing methods. The results show that our method is viable to recognize physical activities using smartphone accelerometers.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-015-3188-y</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-4776-5292</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2017-04, Vol.76 (8), p.10701-10719 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2085583334 |
source | SpringerLink Journals - AutoHoldings |
subjects | Accelerometers Activity recognition Computer Communication Networks Computer Science Data Structures and Information Theory Datasets Exercise Feature extraction Multimedia Information Systems Smartphones Special Purpose and Application-Based Systems |
title | Towards unsupervised physical activity recognition using smartphone accelerometers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A03%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20unsupervised%20physical%20activity%20recognition%20using%20smartphone%20accelerometers&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Lu,%20Yonggang&rft.date=2017-04-01&rft.volume=76&rft.issue=8&rft.spage=10701&rft.epage=10719&rft.pages=10701-10719&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-015-3188-y&rft_dat=%3Cproquest_cross%3E2085583334%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085583334&rft_id=info:pmid/&rfr_iscdi=true |