A hybrid hierarchical framework for classification of breast density using digitized film screen mammograms

In the present work, a hybrid hierarchical framework for classification of breast density using digitized film screen mammograms has been proposed. For designing of an efficient classification framework 480 MLO view digitized screen film mammographic images are taken from DDSM dataset. The ROIs of f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2017-09, Vol.76 (18), p.18789-18813
Hauptverfasser: Kumar, Indrajeet, Bhadauria, H. S., Virmani, Jitendra, Thakur, Shruti
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18813
container_issue 18
container_start_page 18789
container_title Multimedia tools and applications
container_volume 76
creator Kumar, Indrajeet
Bhadauria, H. S.
Virmani, Jitendra
Thakur, Shruti
description In the present work, a hybrid hierarchical framework for classification of breast density using digitized film screen mammograms has been proposed. For designing of an efficient classification framework 480 MLO view digitized screen film mammographic images are taken from DDSM dataset. The ROIs of fixed size i.e. 128 × 128 pixels are cropped from the center area of the breast (i.e. the area where glandular ducts are prominent). A total of 292 texture features based on statistical methods, signal processing based methods and transform domain based methods are computed for each ROI. The computed feature vector is subjected to PCA for dimensionality reduction. The reduced feature space is fed to the classification module. In this work 4-class breast density classification has been conducted using hierarchical framework where the first classifier is used to classify an unknown test ROI into B-I / other class . If the test ROI is predicted as other class , it is inputted to second classifier for the classification into B-II / dense class . If the test ROI is predicted as belonging to dense class , it is inputted to classifier for the classification into B-III / B-IV class. In this work five hierarchical classifiers designs consisting of 3 PCA- k NN, 3 PCA-PNN, 3 PCA-ANN, 3 PCA-NFC and 3 PCA-SVM classifiers has been proposed. The obtained maximum OCA value is 80.4% using PCA-NFC in hierarchical approach. Further, the best performing individual classifiers are clubbed together in a hierarchical framework to design hybrid hierarchical framework for classification of breast density using digitized screen film mammograms. The proposed hybrid hierarchical framework yields the OCA value of 84.1%. The result achieved by the proposed hybrid hierarchical framework is quite promising and can be used in clinical environment for differentiation between different breast density patterns.
doi_str_mv 10.1007/s11042-016-4340-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2085583300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085583300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-1199ab0e8d9662dc29c1ab78537277bde7e13936cfb29c6708e060939671b16b3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Bz9GZpk3a47L4BYIXPYc0TbvZ3TZr0kV2f71ZKnjyNAPzvO_AQ8gtwj0CyIeICHnGAAXLeQ7seEZmWEjOpMzwPO28BCYLwEtyFeMaElhk-YxsFnR1qINr6MrZoINZOaO3tA26t98-bGjrAzVbHaNr02V0fqC-pXWwOo60sUN044Huoxs62rjOje5oG9q6bU-jCdYOtNd977vUF6_JRau30d78zjn5fHr8WL6wt_fn1-XijRmOYmSIVaVrsGVTCZE1JqsM6lqWBZeZlHVjpUVecWHaOp2EhNKCgIpXQmKNouZzcjf17oL_2ts4qrXfhyG9VBmURVFyDpAonCgTfIzBtmoXXK_DQSGok1M1OVVJlTo5VceUyaZMTOzQ2fDX_H_oB1RZexU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085583300</pqid></control><display><type>article</type><title>A hybrid hierarchical framework for classification of breast density using digitized film screen mammograms</title><source>SpringerLink Journals</source><creator>Kumar, Indrajeet ; Bhadauria, H. S. ; Virmani, Jitendra ; Thakur, Shruti</creator><creatorcontrib>Kumar, Indrajeet ; Bhadauria, H. S. ; Virmani, Jitendra ; Thakur, Shruti</creatorcontrib><description>In the present work, a hybrid hierarchical framework for classification of breast density using digitized film screen mammograms has been proposed. For designing of an efficient classification framework 480 MLO view digitized screen film mammographic images are taken from DDSM dataset. The ROIs of fixed size i.e. 128 × 128 pixels are cropped from the center area of the breast (i.e. the area where glandular ducts are prominent). A total of 292 texture features based on statistical methods, signal processing based methods and transform domain based methods are computed for each ROI. The computed feature vector is subjected to PCA for dimensionality reduction. The reduced feature space is fed to the classification module. In this work 4-class breast density classification has been conducted using hierarchical framework where the first classifier is used to classify an unknown test ROI into B-I / other class . If the test ROI is predicted as other class , it is inputted to second classifier for the classification into B-II / dense class . If the test ROI is predicted as belonging to dense class , it is inputted to classifier for the classification into B-III / B-IV class. In this work five hierarchical classifiers designs consisting of 3 PCA- k NN, 3 PCA-PNN, 3 PCA-ANN, 3 PCA-NFC and 3 PCA-SVM classifiers has been proposed. The obtained maximum OCA value is 80.4% using PCA-NFC in hierarchical approach. Further, the best performing individual classifiers are clubbed together in a hierarchical framework to design hybrid hierarchical framework for classification of breast density using digitized screen film mammograms. The proposed hybrid hierarchical framework yields the OCA value of 84.1%. The result achieved by the proposed hybrid hierarchical framework is quite promising and can be used in clinical environment for differentiation between different breast density patterns.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-016-4340-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Breast ; Breast cancer ; Classification ; Classifiers ; Computation ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Density ; Design ; Digitization ; Ducts ; Hierarchies ; Image classification ; Multimedia Information Systems ; Signal processing ; Special Purpose and Application-Based Systems ; Statistical methods</subject><ispartof>Multimedia tools and applications, 2017-09, Vol.76 (18), p.18789-18813</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Multimedia Tools and Applications is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-1199ab0e8d9662dc29c1ab78537277bde7e13936cfb29c6708e060939671b16b3</citedby><cites>FETCH-LOGICAL-c316t-1199ab0e8d9662dc29c1ab78537277bde7e13936cfb29c6708e060939671b16b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-016-4340-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-016-4340-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kumar, Indrajeet</creatorcontrib><creatorcontrib>Bhadauria, H. S.</creatorcontrib><creatorcontrib>Virmani, Jitendra</creatorcontrib><creatorcontrib>Thakur, Shruti</creatorcontrib><title>A hybrid hierarchical framework for classification of breast density using digitized film screen mammograms</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>In the present work, a hybrid hierarchical framework for classification of breast density using digitized film screen mammograms has been proposed. For designing of an efficient classification framework 480 MLO view digitized screen film mammographic images are taken from DDSM dataset. The ROIs of fixed size i.e. 128 × 128 pixels are cropped from the center area of the breast (i.e. the area where glandular ducts are prominent). A total of 292 texture features based on statistical methods, signal processing based methods and transform domain based methods are computed for each ROI. The computed feature vector is subjected to PCA for dimensionality reduction. The reduced feature space is fed to the classification module. In this work 4-class breast density classification has been conducted using hierarchical framework where the first classifier is used to classify an unknown test ROI into B-I / other class . If the test ROI is predicted as other class , it is inputted to second classifier for the classification into B-II / dense class . If the test ROI is predicted as belonging to dense class , it is inputted to classifier for the classification into B-III / B-IV class. In this work five hierarchical classifiers designs consisting of 3 PCA- k NN, 3 PCA-PNN, 3 PCA-ANN, 3 PCA-NFC and 3 PCA-SVM classifiers has been proposed. The obtained maximum OCA value is 80.4% using PCA-NFC in hierarchical approach. Further, the best performing individual classifiers are clubbed together in a hierarchical framework to design hybrid hierarchical framework for classification of breast density using digitized screen film mammograms. The proposed hybrid hierarchical framework yields the OCA value of 84.1%. The result achieved by the proposed hybrid hierarchical framework is quite promising and can be used in clinical environment for differentiation between different breast density patterns.</description><subject>Breast</subject><subject>Breast cancer</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Computation</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Density</subject><subject>Design</subject><subject>Digitization</subject><subject>Ducts</subject><subject>Hierarchies</subject><subject>Image classification</subject><subject>Multimedia Information Systems</subject><subject>Signal processing</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Statistical methods</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8Bz9GZpk3a47L4BYIXPYc0TbvZ3TZr0kV2f71ZKnjyNAPzvO_AQ8gtwj0CyIeICHnGAAXLeQ7seEZmWEjOpMzwPO28BCYLwEtyFeMaElhk-YxsFnR1qINr6MrZoINZOaO3tA26t98-bGjrAzVbHaNr02V0fqC-pXWwOo60sUN044Huoxs62rjOje5oG9q6bU-jCdYOtNd977vUF6_JRau30d78zjn5fHr8WL6wt_fn1-XijRmOYmSIVaVrsGVTCZE1JqsM6lqWBZeZlHVjpUVecWHaOp2EhNKCgIpXQmKNouZzcjf17oL_2ts4qrXfhyG9VBmURVFyDpAonCgTfIzBtmoXXK_DQSGok1M1OVVJlTo5VceUyaZMTOzQ2fDX_H_oB1RZexU</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Kumar, Indrajeet</creator><creator>Bhadauria, H. S.</creator><creator>Virmani, Jitendra</creator><creator>Thakur, Shruti</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20170901</creationdate><title>A hybrid hierarchical framework for classification of breast density using digitized film screen mammograms</title><author>Kumar, Indrajeet ; Bhadauria, H. S. ; Virmani, Jitendra ; Thakur, Shruti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-1199ab0e8d9662dc29c1ab78537277bde7e13936cfb29c6708e060939671b16b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Breast</topic><topic>Breast cancer</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Computation</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Density</topic><topic>Design</topic><topic>Digitization</topic><topic>Ducts</topic><topic>Hierarchies</topic><topic>Image classification</topic><topic>Multimedia Information Systems</topic><topic>Signal processing</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Indrajeet</creatorcontrib><creatorcontrib>Bhadauria, H. S.</creatorcontrib><creatorcontrib>Virmani, Jitendra</creatorcontrib><creatorcontrib>Thakur, Shruti</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Indrajeet</au><au>Bhadauria, H. S.</au><au>Virmani, Jitendra</au><au>Thakur, Shruti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid hierarchical framework for classification of breast density using digitized film screen mammograms</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>76</volume><issue>18</issue><spage>18789</spage><epage>18813</epage><pages>18789-18813</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>In the present work, a hybrid hierarchical framework for classification of breast density using digitized film screen mammograms has been proposed. For designing of an efficient classification framework 480 MLO view digitized screen film mammographic images are taken from DDSM dataset. The ROIs of fixed size i.e. 128 × 128 pixels are cropped from the center area of the breast (i.e. the area where glandular ducts are prominent). A total of 292 texture features based on statistical methods, signal processing based methods and transform domain based methods are computed for each ROI. The computed feature vector is subjected to PCA for dimensionality reduction. The reduced feature space is fed to the classification module. In this work 4-class breast density classification has been conducted using hierarchical framework where the first classifier is used to classify an unknown test ROI into B-I / other class . If the test ROI is predicted as other class , it is inputted to second classifier for the classification into B-II / dense class . If the test ROI is predicted as belonging to dense class , it is inputted to classifier for the classification into B-III / B-IV class. In this work five hierarchical classifiers designs consisting of 3 PCA- k NN, 3 PCA-PNN, 3 PCA-ANN, 3 PCA-NFC and 3 PCA-SVM classifiers has been proposed. The obtained maximum OCA value is 80.4% using PCA-NFC in hierarchical approach. Further, the best performing individual classifiers are clubbed together in a hierarchical framework to design hybrid hierarchical framework for classification of breast density using digitized screen film mammograms. The proposed hybrid hierarchical framework yields the OCA value of 84.1%. The result achieved by the proposed hybrid hierarchical framework is quite promising and can be used in clinical environment for differentiation between different breast density patterns.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-016-4340-z</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2017-09, Vol.76 (18), p.18789-18813
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2085583300
source SpringerLink Journals
subjects Breast
Breast cancer
Classification
Classifiers
Computation
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Density
Design
Digitization
Ducts
Hierarchies
Image classification
Multimedia Information Systems
Signal processing
Special Purpose and Application-Based Systems
Statistical methods
title A hybrid hierarchical framework for classification of breast density using digitized film screen mammograms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A16%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20hierarchical%20framework%20for%20classification%20of%20breast%20density%20using%20digitized%20film%20screen%20mammograms&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Kumar,%20Indrajeet&rft.date=2017-09-01&rft.volume=76&rft.issue=18&rft.spage=18789&rft.epage=18813&rft.pages=18789-18813&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-016-4340-z&rft_dat=%3Cproquest_cross%3E2085583300%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085583300&rft_id=info:pmid/&rfr_iscdi=true