Stokes drift for inertial particles transported by water waves
We study the effect of surface gravity waves on the motion of inertial particles in an incompressible fluid. Using the multiple-scale technique, we perform an analytical calculation which allows us to predict the dynamics of such particles; results are shown for both the infinite- and finite-depth r...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2013-01 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Boffetta, G M Martins Afonso Mazzino, A Onorato, M Santamaria, F |
description | We study the effect of surface gravity waves on the motion of inertial particles in an incompressible fluid. Using the multiple-scale technique, we perform an analytical calculation which allows us to predict the dynamics of such particles; results are shown for both the infinite- and finite-depth regimes. Numerical simulations based on the velocity field resulting from the second-order Stokes theory for the surface elevation have been performed, and an excellent agreement with the analytical predictions is observed. Such an agreement seems to hold even beyond the formal applicability of the theory. We find that the presence of inertia leads to a non-negligible correction to the well-known horizontal Stokes drift; moreover, we find that the vertical velocity is also affected by a drift. The latter result may have some relevant consequences on the rate of sedimentation of particles of finite size. We underline that such a drift would also be observed in the (hypothetical) absence of the gravitational force. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085436704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085436704</sourcerecordid><originalsourceid>FETCH-proquest_journals_20854367043</originalsourceid><addsrcrecordid>eNqNissKwjAQAIMgWLT_EPBciEn6OHkRxbveS7QbSC1N3d0q_r05-AFeZg4zC5FpY3ZFY7VeiZyoV0rpqtZlaTKxv3B8AMkOg2fpI8owAnJwg5xc8n1IkdGNNEVk6OTtI9-OARNfQBux9G4gyH9ei-3peD2ciwnjcwbito8zjim1WjWlNVWtrPnv-gIBOjjj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085436704</pqid></control><display><type>article</type><title>Stokes drift for inertial particles transported by water waves</title><source>Free E- Journals</source><creator>Boffetta, G ; M Martins Afonso ; Mazzino, A ; Onorato, M ; Santamaria, F</creator><creatorcontrib>Boffetta, G ; M Martins Afonso ; Mazzino, A ; Onorato, M ; Santamaria, F</creatorcontrib><description>We study the effect of surface gravity waves on the motion of inertial particles in an incompressible fluid. Using the multiple-scale technique, we perform an analytical calculation which allows us to predict the dynamics of such particles; results are shown for both the infinite- and finite-depth regimes. Numerical simulations based on the velocity field resulting from the second-order Stokes theory for the surface elevation have been performed, and an excellent agreement with the analytical predictions is observed. Such an agreement seems to hold even beyond the formal applicability of the theory. We find that the presence of inertia leads to a non-negligible correction to the well-known horizontal Stokes drift; moreover, we find that the vertical velocity is also affected by a drift. The latter result may have some relevant consequences on the rate of sedimentation of particles of finite size. We underline that such a drift would also be observed in the (hypothetical) absence of the gravitational force.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computational fluid dynamics ; Computer simulation ; Drift ; Elevation ; Fluid flow ; Gravitational waves ; Gravity waves ; Incompressible flow ; Incompressible fluids ; Sedimentation ; Velocity distribution ; Water waves</subject><ispartof>arXiv.org, 2013-01</ispartof><rights>2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Boffetta, G</creatorcontrib><creatorcontrib>M Martins Afonso</creatorcontrib><creatorcontrib>Mazzino, A</creatorcontrib><creatorcontrib>Onorato, M</creatorcontrib><creatorcontrib>Santamaria, F</creatorcontrib><title>Stokes drift for inertial particles transported by water waves</title><title>arXiv.org</title><description>We study the effect of surface gravity waves on the motion of inertial particles in an incompressible fluid. Using the multiple-scale technique, we perform an analytical calculation which allows us to predict the dynamics of such particles; results are shown for both the infinite- and finite-depth regimes. Numerical simulations based on the velocity field resulting from the second-order Stokes theory for the surface elevation have been performed, and an excellent agreement with the analytical predictions is observed. Such an agreement seems to hold even beyond the formal applicability of the theory. We find that the presence of inertia leads to a non-negligible correction to the well-known horizontal Stokes drift; moreover, we find that the vertical velocity is also affected by a drift. The latter result may have some relevant consequences on the rate of sedimentation of particles of finite size. We underline that such a drift would also be observed in the (hypothetical) absence of the gravitational force.</description><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Drift</subject><subject>Elevation</subject><subject>Fluid flow</subject><subject>Gravitational waves</subject><subject>Gravity waves</subject><subject>Incompressible flow</subject><subject>Incompressible fluids</subject><subject>Sedimentation</subject><subject>Velocity distribution</subject><subject>Water waves</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNissKwjAQAIMgWLT_EPBciEn6OHkRxbveS7QbSC1N3d0q_r05-AFeZg4zC5FpY3ZFY7VeiZyoV0rpqtZlaTKxv3B8AMkOg2fpI8owAnJwg5xc8n1IkdGNNEVk6OTtI9-OARNfQBux9G4gyH9ei-3peD2ciwnjcwbito8zjim1WjWlNVWtrPnv-gIBOjjj</recordid><startdate>20130124</startdate><enddate>20130124</enddate><creator>Boffetta, G</creator><creator>M Martins Afonso</creator><creator>Mazzino, A</creator><creator>Onorato, M</creator><creator>Santamaria, F</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130124</creationdate><title>Stokes drift for inertial particles transported by water waves</title><author>Boffetta, G ; M Martins Afonso ; Mazzino, A ; Onorato, M ; Santamaria, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20854367043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Drift</topic><topic>Elevation</topic><topic>Fluid flow</topic><topic>Gravitational waves</topic><topic>Gravity waves</topic><topic>Incompressible flow</topic><topic>Incompressible fluids</topic><topic>Sedimentation</topic><topic>Velocity distribution</topic><topic>Water waves</topic><toplevel>online_resources</toplevel><creatorcontrib>Boffetta, G</creatorcontrib><creatorcontrib>M Martins Afonso</creatorcontrib><creatorcontrib>Mazzino, A</creatorcontrib><creatorcontrib>Onorato, M</creatorcontrib><creatorcontrib>Santamaria, F</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boffetta, G</au><au>M Martins Afonso</au><au>Mazzino, A</au><au>Onorato, M</au><au>Santamaria, F</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Stokes drift for inertial particles transported by water waves</atitle><jtitle>arXiv.org</jtitle><date>2013-01-24</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>We study the effect of surface gravity waves on the motion of inertial particles in an incompressible fluid. Using the multiple-scale technique, we perform an analytical calculation which allows us to predict the dynamics of such particles; results are shown for both the infinite- and finite-depth regimes. Numerical simulations based on the velocity field resulting from the second-order Stokes theory for the surface elevation have been performed, and an excellent agreement with the analytical predictions is observed. Such an agreement seems to hold even beyond the formal applicability of the theory. We find that the presence of inertia leads to a non-negligible correction to the well-known horizontal Stokes drift; moreover, we find that the vertical velocity is also affected by a drift. The latter result may have some relevant consequences on the rate of sedimentation of particles of finite size. We underline that such a drift would also be observed in the (hypothetical) absence of the gravitational force.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2013-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2085436704 |
source | Free E- Journals |
subjects | Computational fluid dynamics Computer simulation Drift Elevation Fluid flow Gravitational waves Gravity waves Incompressible flow Incompressible fluids Sedimentation Velocity distribution Water waves |
title | Stokes drift for inertial particles transported by water waves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A29%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Stokes%20drift%20for%20inertial%20particles%20transported%20by%20water%20waves&rft.jtitle=arXiv.org&rft.au=Boffetta,%20G&rft.date=2013-01-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2085436704%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085436704&rft_id=info:pmid/&rfr_iscdi=true |