Modeling of the long-time asymptotic dynamics of a point-like object

We introduce four original concepts: First, the point-like object (PO) specified as a classical extended real object whose response to an external force is aptly specified solely by the trajectory of a single point, whose velocity eventually stops changing after the cessation of the external force....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2013-01
Hauptverfasser: Ribaric, Marijan, Sustersic, Luka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ribaric, Marijan
Sustersic, Luka
description We introduce four original concepts: First, the point-like object (PO) specified as a classical extended real object whose response to an external force is aptly specified solely by the trajectory of a single point, whose velocity eventually stops changing after the cessation of the external force. Second, the dynamic models of an PO that generalize the Newton second law by the explicit modeling of PO-acceleration by nonlinear functions of the external force. Third, the long-time asymptotic dynamics of an PO (LTAD) modeled by polynomials in time-derivatives of the external force (by LTAD-models). To make LTAD-models we do not need to know the PO equation of motion. Given the PO equation of motion, without solving it, we can calculate the appropriate LTAD-models, but not vice verse. Fourth, the asymptotic differential equations about the LTAD. They are equivalent to the LTAD-models, but not to the PO equation of motion. To resolve the conceptual controversy surrounding the relativistic Lorentz-Abraham-Dirac equation, we interpret this equation as an asymptotic differential equation about the LTAD of an electrified PO, and not as a differential equation of motion for an electrified PO. Keywords: Point-like; asymptotic dynamics; cyclic motion; differential equation; Lorentz-Abraham-Dirac equation
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085373012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085373012</sourcerecordid><originalsourceid>FETCH-proquest_journals_20853730123</originalsourceid><addsrcrecordid>eNqNyr0OgjAUQOHGxESivMNNnJuU1gq7P3FxcycVChZLL9LLwNuriQ_gdIbzLVgilcp4sZNyxdIYOyGE3OdSa5Ww4xVr611oARughwWPoeXkegsmzv1ASK6Ceg6md1X8IgMDukDcu6cFvHe2og1bNsZHm_66Ztvz6Xa48GHE12QjlR1OY_isUopCq1yJTKr_1BsiojpG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085373012</pqid></control><display><type>article</type><title>Modeling of the long-time asymptotic dynamics of a point-like object</title><source>Free E- Journals</source><creator>Ribaric, Marijan ; Sustersic, Luka</creator><creatorcontrib>Ribaric, Marijan ; Sustersic, Luka</creatorcontrib><description>We introduce four original concepts: First, the point-like object (PO) specified as a classical extended real object whose response to an external force is aptly specified solely by the trajectory of a single point, whose velocity eventually stops changing after the cessation of the external force. Second, the dynamic models of an PO that generalize the Newton second law by the explicit modeling of PO-acceleration by nonlinear functions of the external force. Third, the long-time asymptotic dynamics of an PO (LTAD) modeled by polynomials in time-derivatives of the external force (by LTAD-models). To make LTAD-models we do not need to know the PO equation of motion. Given the PO equation of motion, without solving it, we can calculate the appropriate LTAD-models, but not vice verse. Fourth, the asymptotic differential equations about the LTAD. They are equivalent to the LTAD-models, but not to the PO equation of motion. To resolve the conceptual controversy surrounding the relativistic Lorentz-Abraham-Dirac equation, we interpret this equation as an asymptotic differential equation about the LTAD of an electrified PO, and not as a differential equation of motion for an electrified PO. Keywords: Point-like; asymptotic dynamics; cyclic motion; differential equation; Lorentz-Abraham-Dirac equation</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Acceleration ; Asymptotic properties ; Differential equations ; Dirac equation ; Dynamic models ; Equations of motion ; Mathematical analysis ; Modelling ; Newton second law ; Oscillators ; Polynomials</subject><ispartof>arXiv.org, 2013-01</ispartof><rights>2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Ribaric, Marijan</creatorcontrib><creatorcontrib>Sustersic, Luka</creatorcontrib><title>Modeling of the long-time asymptotic dynamics of a point-like object</title><title>arXiv.org</title><description>We introduce four original concepts: First, the point-like object (PO) specified as a classical extended real object whose response to an external force is aptly specified solely by the trajectory of a single point, whose velocity eventually stops changing after the cessation of the external force. Second, the dynamic models of an PO that generalize the Newton second law by the explicit modeling of PO-acceleration by nonlinear functions of the external force. Third, the long-time asymptotic dynamics of an PO (LTAD) modeled by polynomials in time-derivatives of the external force (by LTAD-models). To make LTAD-models we do not need to know the PO equation of motion. Given the PO equation of motion, without solving it, we can calculate the appropriate LTAD-models, but not vice verse. Fourth, the asymptotic differential equations about the LTAD. They are equivalent to the LTAD-models, but not to the PO equation of motion. To resolve the conceptual controversy surrounding the relativistic Lorentz-Abraham-Dirac equation, we interpret this equation as an asymptotic differential equation about the LTAD of an electrified PO, and not as a differential equation of motion for an electrified PO. Keywords: Point-like; asymptotic dynamics; cyclic motion; differential equation; Lorentz-Abraham-Dirac equation</description><subject>Acceleration</subject><subject>Asymptotic properties</subject><subject>Differential equations</subject><subject>Dirac equation</subject><subject>Dynamic models</subject><subject>Equations of motion</subject><subject>Mathematical analysis</subject><subject>Modelling</subject><subject>Newton second law</subject><subject>Oscillators</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0OgjAUQOHGxESivMNNnJuU1gq7P3FxcycVChZLL9LLwNuriQ_gdIbzLVgilcp4sZNyxdIYOyGE3OdSa5Ww4xVr611oARughwWPoeXkegsmzv1ASK6Ceg6md1X8IgMDukDcu6cFvHe2og1bNsZHm_66Ztvz6Xa48GHE12QjlR1OY_isUopCq1yJTKr_1BsiojpG</recordid><startdate>20130125</startdate><enddate>20130125</enddate><creator>Ribaric, Marijan</creator><creator>Sustersic, Luka</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130125</creationdate><title>Modeling of the long-time asymptotic dynamics of a point-like object</title><author>Ribaric, Marijan ; Sustersic, Luka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20853730123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acceleration</topic><topic>Asymptotic properties</topic><topic>Differential equations</topic><topic>Dirac equation</topic><topic>Dynamic models</topic><topic>Equations of motion</topic><topic>Mathematical analysis</topic><topic>Modelling</topic><topic>Newton second law</topic><topic>Oscillators</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Ribaric, Marijan</creatorcontrib><creatorcontrib>Sustersic, Luka</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ribaric, Marijan</au><au>Sustersic, Luka</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Modeling of the long-time asymptotic dynamics of a point-like object</atitle><jtitle>arXiv.org</jtitle><date>2013-01-25</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>We introduce four original concepts: First, the point-like object (PO) specified as a classical extended real object whose response to an external force is aptly specified solely by the trajectory of a single point, whose velocity eventually stops changing after the cessation of the external force. Second, the dynamic models of an PO that generalize the Newton second law by the explicit modeling of PO-acceleration by nonlinear functions of the external force. Third, the long-time asymptotic dynamics of an PO (LTAD) modeled by polynomials in time-derivatives of the external force (by LTAD-models). To make LTAD-models we do not need to know the PO equation of motion. Given the PO equation of motion, without solving it, we can calculate the appropriate LTAD-models, but not vice verse. Fourth, the asymptotic differential equations about the LTAD. They are equivalent to the LTAD-models, but not to the PO equation of motion. To resolve the conceptual controversy surrounding the relativistic Lorentz-Abraham-Dirac equation, we interpret this equation as an asymptotic differential equation about the LTAD of an electrified PO, and not as a differential equation of motion for an electrified PO. Keywords: Point-like; asymptotic dynamics; cyclic motion; differential equation; Lorentz-Abraham-Dirac equation</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2013-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2085373012
source Free E- Journals
subjects Acceleration
Asymptotic properties
Differential equations
Dirac equation
Dynamic models
Equations of motion
Mathematical analysis
Modelling
Newton second law
Oscillators
Polynomials
title Modeling of the long-time asymptotic dynamics of a point-like object
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T13%3A01%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Modeling%20of%20the%20long-time%20asymptotic%20dynamics%20of%20a%20point-like%20object&rft.jtitle=arXiv.org&rft.au=Ribaric,%20Marijan&rft.date=2013-01-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2085373012%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085373012&rft_id=info:pmid/&rfr_iscdi=true