Modeling of the long-time asymptotic dynamics of a point-like object
We introduce four original concepts: First, the point-like object (PO) specified as a classical extended real object whose response to an external force is aptly specified solely by the trajectory of a single point, whose velocity eventually stops changing after the cessation of the external force....
Gespeichert in:
Veröffentlicht in: | arXiv.org 2013-01 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ribaric, Marijan Sustersic, Luka |
description | We introduce four original concepts: First, the point-like object (PO) specified as a classical extended real object whose response to an external force is aptly specified solely by the trajectory of a single point, whose velocity eventually stops changing after the cessation of the external force. Second, the dynamic models of an PO that generalize the Newton second law by the explicit modeling of PO-acceleration by nonlinear functions of the external force. Third, the long-time asymptotic dynamics of an PO (LTAD) modeled by polynomials in time-derivatives of the external force (by LTAD-models). To make LTAD-models we do not need to know the PO equation of motion. Given the PO equation of motion, without solving it, we can calculate the appropriate LTAD-models, but not vice verse. Fourth, the asymptotic differential equations about the LTAD. They are equivalent to the LTAD-models, but not to the PO equation of motion. To resolve the conceptual controversy surrounding the relativistic Lorentz-Abraham-Dirac equation, we interpret this equation as an asymptotic differential equation about the LTAD of an electrified PO, and not as a differential equation of motion for an electrified PO. Keywords: Point-like; asymptotic dynamics; cyclic motion; differential equation; Lorentz-Abraham-Dirac equation |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085373012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085373012</sourcerecordid><originalsourceid>FETCH-proquest_journals_20853730123</originalsourceid><addsrcrecordid>eNqNyr0OgjAUQOHGxESivMNNnJuU1gq7P3FxcycVChZLL9LLwNuriQ_gdIbzLVgilcp4sZNyxdIYOyGE3OdSa5Ww4xVr611oARughwWPoeXkegsmzv1ASK6Ceg6md1X8IgMDukDcu6cFvHe2og1bNsZHm_66Ztvz6Xa48GHE12QjlR1OY_isUopCq1yJTKr_1BsiojpG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085373012</pqid></control><display><type>article</type><title>Modeling of the long-time asymptotic dynamics of a point-like object</title><source>Free E- Journals</source><creator>Ribaric, Marijan ; Sustersic, Luka</creator><creatorcontrib>Ribaric, Marijan ; Sustersic, Luka</creatorcontrib><description>We introduce four original concepts: First, the point-like object (PO) specified as a classical extended real object whose response to an external force is aptly specified solely by the trajectory of a single point, whose velocity eventually stops changing after the cessation of the external force. Second, the dynamic models of an PO that generalize the Newton second law by the explicit modeling of PO-acceleration by nonlinear functions of the external force. Third, the long-time asymptotic dynamics of an PO (LTAD) modeled by polynomials in time-derivatives of the external force (by LTAD-models). To make LTAD-models we do not need to know the PO equation of motion. Given the PO equation of motion, without solving it, we can calculate the appropriate LTAD-models, but not vice verse. Fourth, the asymptotic differential equations about the LTAD. They are equivalent to the LTAD-models, but not to the PO equation of motion. To resolve the conceptual controversy surrounding the relativistic Lorentz-Abraham-Dirac equation, we interpret this equation as an asymptotic differential equation about the LTAD of an electrified PO, and not as a differential equation of motion for an electrified PO. Keywords: Point-like; asymptotic dynamics; cyclic motion; differential equation; Lorentz-Abraham-Dirac equation</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Acceleration ; Asymptotic properties ; Differential equations ; Dirac equation ; Dynamic models ; Equations of motion ; Mathematical analysis ; Modelling ; Newton second law ; Oscillators ; Polynomials</subject><ispartof>arXiv.org, 2013-01</ispartof><rights>2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Ribaric, Marijan</creatorcontrib><creatorcontrib>Sustersic, Luka</creatorcontrib><title>Modeling of the long-time asymptotic dynamics of a point-like object</title><title>arXiv.org</title><description>We introduce four original concepts: First, the point-like object (PO) specified as a classical extended real object whose response to an external force is aptly specified solely by the trajectory of a single point, whose velocity eventually stops changing after the cessation of the external force. Second, the dynamic models of an PO that generalize the Newton second law by the explicit modeling of PO-acceleration by nonlinear functions of the external force. Third, the long-time asymptotic dynamics of an PO (LTAD) modeled by polynomials in time-derivatives of the external force (by LTAD-models). To make LTAD-models we do not need to know the PO equation of motion. Given the PO equation of motion, without solving it, we can calculate the appropriate LTAD-models, but not vice verse. Fourth, the asymptotic differential equations about the LTAD. They are equivalent to the LTAD-models, but not to the PO equation of motion. To resolve the conceptual controversy surrounding the relativistic Lorentz-Abraham-Dirac equation, we interpret this equation as an asymptotic differential equation about the LTAD of an electrified PO, and not as a differential equation of motion for an electrified PO. Keywords: Point-like; asymptotic dynamics; cyclic motion; differential equation; Lorentz-Abraham-Dirac equation</description><subject>Acceleration</subject><subject>Asymptotic properties</subject><subject>Differential equations</subject><subject>Dirac equation</subject><subject>Dynamic models</subject><subject>Equations of motion</subject><subject>Mathematical analysis</subject><subject>Modelling</subject><subject>Newton second law</subject><subject>Oscillators</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0OgjAUQOHGxESivMNNnJuU1gq7P3FxcycVChZLL9LLwNuriQ_gdIbzLVgilcp4sZNyxdIYOyGE3OdSa5Ww4xVr611oARughwWPoeXkegsmzv1ASK6Ceg6md1X8IgMDukDcu6cFvHe2og1bNsZHm_66Ztvz6Xa48GHE12QjlR1OY_isUopCq1yJTKr_1BsiojpG</recordid><startdate>20130125</startdate><enddate>20130125</enddate><creator>Ribaric, Marijan</creator><creator>Sustersic, Luka</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130125</creationdate><title>Modeling of the long-time asymptotic dynamics of a point-like object</title><author>Ribaric, Marijan ; Sustersic, Luka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20853730123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acceleration</topic><topic>Asymptotic properties</topic><topic>Differential equations</topic><topic>Dirac equation</topic><topic>Dynamic models</topic><topic>Equations of motion</topic><topic>Mathematical analysis</topic><topic>Modelling</topic><topic>Newton second law</topic><topic>Oscillators</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Ribaric, Marijan</creatorcontrib><creatorcontrib>Sustersic, Luka</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ribaric, Marijan</au><au>Sustersic, Luka</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Modeling of the long-time asymptotic dynamics of a point-like object</atitle><jtitle>arXiv.org</jtitle><date>2013-01-25</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>We introduce four original concepts: First, the point-like object (PO) specified as a classical extended real object whose response to an external force is aptly specified solely by the trajectory of a single point, whose velocity eventually stops changing after the cessation of the external force. Second, the dynamic models of an PO that generalize the Newton second law by the explicit modeling of PO-acceleration by nonlinear functions of the external force. Third, the long-time asymptotic dynamics of an PO (LTAD) modeled by polynomials in time-derivatives of the external force (by LTAD-models). To make LTAD-models we do not need to know the PO equation of motion. Given the PO equation of motion, without solving it, we can calculate the appropriate LTAD-models, but not vice verse. Fourth, the asymptotic differential equations about the LTAD. They are equivalent to the LTAD-models, but not to the PO equation of motion. To resolve the conceptual controversy surrounding the relativistic Lorentz-Abraham-Dirac equation, we interpret this equation as an asymptotic differential equation about the LTAD of an electrified PO, and not as a differential equation of motion for an electrified PO. Keywords: Point-like; asymptotic dynamics; cyclic motion; differential equation; Lorentz-Abraham-Dirac equation</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2013-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2085373012 |
source | Free E- Journals |
subjects | Acceleration Asymptotic properties Differential equations Dirac equation Dynamic models Equations of motion Mathematical analysis Modelling Newton second law Oscillators Polynomials |
title | Modeling of the long-time asymptotic dynamics of a point-like object |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T13%3A01%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Modeling%20of%20the%20long-time%20asymptotic%20dynamics%20of%20a%20point-like%20object&rft.jtitle=arXiv.org&rft.au=Ribaric,%20Marijan&rft.date=2013-01-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2085373012%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085373012&rft_id=info:pmid/&rfr_iscdi=true |