Convergence Analysis of a Finite Difference Scheme for the Gradient Flow associated with the ROF Model

We present a convergence analysis of a finite difference scheme for the time dependent partial different equation called gradient flow associated with the Rudin-Osher-Fatemi model. We devise an iterative algorithm to compute the solution of the finite difference scheme and prove the convergence of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2013-02
Hauptverfasser: Hong, Qianying, Ming-Jun, Lai, Wang, Jingyue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Hong, Qianying
Ming-Jun, Lai
Wang, Jingyue
description We present a convergence analysis of a finite difference scheme for the time dependent partial different equation called gradient flow associated with the Rudin-Osher-Fatemi model. We devise an iterative algorithm to compute the solution of the finite difference scheme and prove the convergence of the iterative algorithm. Finally computational experiments are shown to demonstrate the convergence of the finite difference scheme. An application for image denoising is given.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085293940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085293940</sourcerecordid><originalsourceid>FETCH-proquest_journals_20852939403</originalsourceid><addsrcrecordid>eNqNjUEKwjAQAIMgWLR_WPAsxKTVepRq9SKCei-h3diUmmg2Kv5eER_gaQ4zMD0WCSmnkywRYsBiopZzLmZzkaYyYjp39oH-jLZCWFrVvcgQOA0KCmNNQFgZrdF__bFq8IKgnYfQIGy8qg3aAEXnnqCIXGVUwBqeJjTf4rAvYOdq7Easr1VHGP84ZONifcq3k6t3tztSKFt39589lYJnqVjIRcLlf9UbJGJF6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085293940</pqid></control><display><type>article</type><title>Convergence Analysis of a Finite Difference Scheme for the Gradient Flow associated with the ROF Model</title><source>Freely Accessible Journals at publisher websites</source><creator>Hong, Qianying ; Ming-Jun, Lai ; Wang, Jingyue</creator><creatorcontrib>Hong, Qianying ; Ming-Jun, Lai ; Wang, Jingyue</creatorcontrib><description>We present a convergence analysis of a finite difference scheme for the time dependent partial different equation called gradient flow associated with the Rudin-Osher-Fatemi model. We devise an iterative algorithm to compute the solution of the finite difference scheme and prove the convergence of the iterative algorithm. Finally computational experiments are shown to demonstrate the convergence of the finite difference scheme. An application for image denoising is given.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Convergence ; Finite difference method ; Gradient flow ; Iterative algorithms ; Iterative methods ; Mathematical analysis ; Noise reduction ; Time dependence ; Viscosity</subject><ispartof>arXiv.org, 2013-02</ispartof><rights>2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Hong, Qianying</creatorcontrib><creatorcontrib>Ming-Jun, Lai</creatorcontrib><creatorcontrib>Wang, Jingyue</creatorcontrib><title>Convergence Analysis of a Finite Difference Scheme for the Gradient Flow associated with the ROF Model</title><title>arXiv.org</title><description>We present a convergence analysis of a finite difference scheme for the time dependent partial different equation called gradient flow associated with the Rudin-Osher-Fatemi model. We devise an iterative algorithm to compute the solution of the finite difference scheme and prove the convergence of the iterative algorithm. Finally computational experiments are shown to demonstrate the convergence of the finite difference scheme. An application for image denoising is given.</description><subject>Convergence</subject><subject>Finite difference method</subject><subject>Gradient flow</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Noise reduction</subject><subject>Time dependence</subject><subject>Viscosity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjUEKwjAQAIMgWLR_WPAsxKTVepRq9SKCei-h3diUmmg2Kv5eER_gaQ4zMD0WCSmnkywRYsBiopZzLmZzkaYyYjp39oH-jLZCWFrVvcgQOA0KCmNNQFgZrdF__bFq8IKgnYfQIGy8qg3aAEXnnqCIXGVUwBqeJjTf4rAvYOdq7Easr1VHGP84ZONifcq3k6t3tztSKFt39589lYJnqVjIRcLlf9UbJGJF6g</recordid><startdate>20130221</startdate><enddate>20130221</enddate><creator>Hong, Qianying</creator><creator>Ming-Jun, Lai</creator><creator>Wang, Jingyue</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130221</creationdate><title>Convergence Analysis of a Finite Difference Scheme for the Gradient Flow associated with the ROF Model</title><author>Hong, Qianying ; Ming-Jun, Lai ; Wang, Jingyue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20852939403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Convergence</topic><topic>Finite difference method</topic><topic>Gradient flow</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Noise reduction</topic><topic>Time dependence</topic><topic>Viscosity</topic><toplevel>online_resources</toplevel><creatorcontrib>Hong, Qianying</creatorcontrib><creatorcontrib>Ming-Jun, Lai</creatorcontrib><creatorcontrib>Wang, Jingyue</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Qianying</au><au>Ming-Jun, Lai</au><au>Wang, Jingyue</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Convergence Analysis of a Finite Difference Scheme for the Gradient Flow associated with the ROF Model</atitle><jtitle>arXiv.org</jtitle><date>2013-02-21</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>We present a convergence analysis of a finite difference scheme for the time dependent partial different equation called gradient flow associated with the Rudin-Osher-Fatemi model. We devise an iterative algorithm to compute the solution of the finite difference scheme and prove the convergence of the iterative algorithm. Finally computational experiments are shown to demonstrate the convergence of the finite difference scheme. An application for image denoising is given.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2013-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2085293940
source Freely Accessible Journals at publisher websites
subjects Convergence
Finite difference method
Gradient flow
Iterative algorithms
Iterative methods
Mathematical analysis
Noise reduction
Time dependence
Viscosity
title Convergence Analysis of a Finite Difference Scheme for the Gradient Flow associated with the ROF Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T23%3A33%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Convergence%20Analysis%20of%20a%20Finite%20Difference%20Scheme%20for%20the%20Gradient%20Flow%20associated%20with%20the%20ROF%20Model&rft.jtitle=arXiv.org&rft.au=Hong,%20Qianying&rft.date=2013-02-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2085293940%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085293940&rft_id=info:pmid/&rfr_iscdi=true