Convergence Analysis of a Finite Difference Scheme for the Gradient Flow associated with the ROF Model
We present a convergence analysis of a finite difference scheme for the time dependent partial different equation called gradient flow associated with the Rudin-Osher-Fatemi model. We devise an iterative algorithm to compute the solution of the finite difference scheme and prove the convergence of t...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2013-02 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Hong, Qianying Ming-Jun, Lai Wang, Jingyue |
description | We present a convergence analysis of a finite difference scheme for the time dependent partial different equation called gradient flow associated with the Rudin-Osher-Fatemi model. We devise an iterative algorithm to compute the solution of the finite difference scheme and prove the convergence of the iterative algorithm. Finally computational experiments are shown to demonstrate the convergence of the finite difference scheme. An application for image denoising is given. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085293940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085293940</sourcerecordid><originalsourceid>FETCH-proquest_journals_20852939403</originalsourceid><addsrcrecordid>eNqNjUEKwjAQAIMgWLR_WPAsxKTVepRq9SKCei-h3diUmmg2Kv5eER_gaQ4zMD0WCSmnkywRYsBiopZzLmZzkaYyYjp39oH-jLZCWFrVvcgQOA0KCmNNQFgZrdF__bFq8IKgnYfQIGy8qg3aAEXnnqCIXGVUwBqeJjTf4rAvYOdq7Easr1VHGP84ZONifcq3k6t3tztSKFt39589lYJnqVjIRcLlf9UbJGJF6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085293940</pqid></control><display><type>article</type><title>Convergence Analysis of a Finite Difference Scheme for the Gradient Flow associated with the ROF Model</title><source>Freely Accessible Journals at publisher websites</source><creator>Hong, Qianying ; Ming-Jun, Lai ; Wang, Jingyue</creator><creatorcontrib>Hong, Qianying ; Ming-Jun, Lai ; Wang, Jingyue</creatorcontrib><description>We present a convergence analysis of a finite difference scheme for the time dependent partial different equation called gradient flow associated with the Rudin-Osher-Fatemi model. We devise an iterative algorithm to compute the solution of the finite difference scheme and prove the convergence of the iterative algorithm. Finally computational experiments are shown to demonstrate the convergence of the finite difference scheme. An application for image denoising is given.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Convergence ; Finite difference method ; Gradient flow ; Iterative algorithms ; Iterative methods ; Mathematical analysis ; Noise reduction ; Time dependence ; Viscosity</subject><ispartof>arXiv.org, 2013-02</ispartof><rights>2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Hong, Qianying</creatorcontrib><creatorcontrib>Ming-Jun, Lai</creatorcontrib><creatorcontrib>Wang, Jingyue</creatorcontrib><title>Convergence Analysis of a Finite Difference Scheme for the Gradient Flow associated with the ROF Model</title><title>arXiv.org</title><description>We present a convergence analysis of a finite difference scheme for the time dependent partial different equation called gradient flow associated with the Rudin-Osher-Fatemi model. We devise an iterative algorithm to compute the solution of the finite difference scheme and prove the convergence of the iterative algorithm. Finally computational experiments are shown to demonstrate the convergence of the finite difference scheme. An application for image denoising is given.</description><subject>Convergence</subject><subject>Finite difference method</subject><subject>Gradient flow</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Noise reduction</subject><subject>Time dependence</subject><subject>Viscosity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjUEKwjAQAIMgWLR_WPAsxKTVepRq9SKCei-h3diUmmg2Kv5eER_gaQ4zMD0WCSmnkywRYsBiopZzLmZzkaYyYjp39oH-jLZCWFrVvcgQOA0KCmNNQFgZrdF__bFq8IKgnYfQIGy8qg3aAEXnnqCIXGVUwBqeJjTf4rAvYOdq7Easr1VHGP84ZONifcq3k6t3tztSKFt39589lYJnqVjIRcLlf9UbJGJF6g</recordid><startdate>20130221</startdate><enddate>20130221</enddate><creator>Hong, Qianying</creator><creator>Ming-Jun, Lai</creator><creator>Wang, Jingyue</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130221</creationdate><title>Convergence Analysis of a Finite Difference Scheme for the Gradient Flow associated with the ROF Model</title><author>Hong, Qianying ; Ming-Jun, Lai ; Wang, Jingyue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20852939403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Convergence</topic><topic>Finite difference method</topic><topic>Gradient flow</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Noise reduction</topic><topic>Time dependence</topic><topic>Viscosity</topic><toplevel>online_resources</toplevel><creatorcontrib>Hong, Qianying</creatorcontrib><creatorcontrib>Ming-Jun, Lai</creatorcontrib><creatorcontrib>Wang, Jingyue</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Qianying</au><au>Ming-Jun, Lai</au><au>Wang, Jingyue</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Convergence Analysis of a Finite Difference Scheme for the Gradient Flow associated with the ROF Model</atitle><jtitle>arXiv.org</jtitle><date>2013-02-21</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>We present a convergence analysis of a finite difference scheme for the time dependent partial different equation called gradient flow associated with the Rudin-Osher-Fatemi model. We devise an iterative algorithm to compute the solution of the finite difference scheme and prove the convergence of the iterative algorithm. Finally computational experiments are shown to demonstrate the convergence of the finite difference scheme. An application for image denoising is given.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2013-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2085293940 |
source | Freely Accessible Journals at publisher websites |
subjects | Convergence Finite difference method Gradient flow Iterative algorithms Iterative methods Mathematical analysis Noise reduction Time dependence Viscosity |
title | Convergence Analysis of a Finite Difference Scheme for the Gradient Flow associated with the ROF Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T23%3A33%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Convergence%20Analysis%20of%20a%20Finite%20Difference%20Scheme%20for%20the%20Gradient%20Flow%20associated%20with%20the%20ROF%20Model&rft.jtitle=arXiv.org&rft.au=Hong,%20Qianying&rft.date=2013-02-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2085293940%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085293940&rft_id=info:pmid/&rfr_iscdi=true |