Scattering from rough surfaces: A simple reflection phenomenon in fractional space
In this paper, scattering of incident plane waves from rough surfaces have been modeled in a fractional space. It is shown how wave scattering from a rough surface, could be a simple reflection problem in a fractional space. In the integer space, fluctuations of the surface result in wave scattering...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2013-05 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Safdari, H Vahabi, M Jafari, G R |
description | In this paper, scattering of incident plane waves from rough surfaces have been modeled in a fractional space. It is shown how wave scattering from a rough surface, could be a simple reflection problem in a fractional space. In the integer space, fluctuations of the surface result in wave scattering while in the fractional space these fluctuations are compensated by the geometry of the space. In the fractional space, reflection leads to the same results as the scattering in the integer space. To make it more clear, scattered wave function in the framework of Kirchhoff theory is considered in a fractional space and results are compared with those from a self-affine surfaces. Our results show that these two approaches are comparable. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085253238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085253238</sourcerecordid><originalsourceid>FETCH-proquest_journals_20852532383</originalsourceid><addsrcrecordid>eNqNi9EKwiAYRiUIGrV3-KHrgWnW6C6i6Lq6HzJ0czg1f33_JHqALj4OfJyzIBXjfNe0e8ZWpEacKKXscGRC8Io8nr1MSUXjBtDRzxB9HkbAHLXsFZ7gDGjmYBVEpa3qk_EOwqicn8scGFcy-b2lBQwl2pCllhZV_eOabG_X1-XehOjfWWHqJp9j0bFjtBVMcMZb_p_1ASUWQBk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085253238</pqid></control><display><type>article</type><title>Scattering from rough surfaces: A simple reflection phenomenon in fractional space</title><source>Free E- Journals</source><creator>Safdari, H ; Vahabi, M ; Jafari, G R</creator><creatorcontrib>Safdari, H ; Vahabi, M ; Jafari, G R</creatorcontrib><description>In this paper, scattering of incident plane waves from rough surfaces have been modeled in a fractional space. It is shown how wave scattering from a rough surface, could be a simple reflection problem in a fractional space. In the integer space, fluctuations of the surface result in wave scattering while in the fractional space these fluctuations are compensated by the geometry of the space. In the fractional space, reflection leads to the same results as the scattering in the integer space. To make it more clear, scattered wave function in the framework of Kirchhoff theory is considered in a fractional space and results are compared with those from a self-affine surfaces. Our results show that these two approaches are comparable.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Kirchhoff theory ; Plane waves ; Reflection ; Variations ; Wave scattering</subject><ispartof>arXiv.org, 2013-05</ispartof><rights>2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Safdari, H</creatorcontrib><creatorcontrib>Vahabi, M</creatorcontrib><creatorcontrib>Jafari, G R</creatorcontrib><title>Scattering from rough surfaces: A simple reflection phenomenon in fractional space</title><title>arXiv.org</title><description>In this paper, scattering of incident plane waves from rough surfaces have been modeled in a fractional space. It is shown how wave scattering from a rough surface, could be a simple reflection problem in a fractional space. In the integer space, fluctuations of the surface result in wave scattering while in the fractional space these fluctuations are compensated by the geometry of the space. In the fractional space, reflection leads to the same results as the scattering in the integer space. To make it more clear, scattered wave function in the framework of Kirchhoff theory is considered in a fractional space and results are compared with those from a self-affine surfaces. Our results show that these two approaches are comparable.</description><subject>Kirchhoff theory</subject><subject>Plane waves</subject><subject>Reflection</subject><subject>Variations</subject><subject>Wave scattering</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi9EKwiAYRiUIGrV3-KHrgWnW6C6i6Lq6HzJ0czg1f33_JHqALj4OfJyzIBXjfNe0e8ZWpEacKKXscGRC8Io8nr1MSUXjBtDRzxB9HkbAHLXsFZ7gDGjmYBVEpa3qk_EOwqicn8scGFcy-b2lBQwl2pCllhZV_eOabG_X1-XehOjfWWHqJp9j0bFjtBVMcMZb_p_1ASUWQBk</recordid><startdate>20130530</startdate><enddate>20130530</enddate><creator>Safdari, H</creator><creator>Vahabi, M</creator><creator>Jafari, G R</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130530</creationdate><title>Scattering from rough surfaces: A simple reflection phenomenon in fractional space</title><author>Safdari, H ; Vahabi, M ; Jafari, G R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20852532383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Kirchhoff theory</topic><topic>Plane waves</topic><topic>Reflection</topic><topic>Variations</topic><topic>Wave scattering</topic><toplevel>online_resources</toplevel><creatorcontrib>Safdari, H</creatorcontrib><creatorcontrib>Vahabi, M</creatorcontrib><creatorcontrib>Jafari, G R</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Safdari, H</au><au>Vahabi, M</au><au>Jafari, G R</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Scattering from rough surfaces: A simple reflection phenomenon in fractional space</atitle><jtitle>arXiv.org</jtitle><date>2013-05-30</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>In this paper, scattering of incident plane waves from rough surfaces have been modeled in a fractional space. It is shown how wave scattering from a rough surface, could be a simple reflection problem in a fractional space. In the integer space, fluctuations of the surface result in wave scattering while in the fractional space these fluctuations are compensated by the geometry of the space. In the fractional space, reflection leads to the same results as the scattering in the integer space. To make it more clear, scattered wave function in the framework of Kirchhoff theory is considered in a fractional space and results are compared with those from a self-affine surfaces. Our results show that these two approaches are comparable.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2013-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2085253238 |
source | Free E- Journals |
subjects | Kirchhoff theory Plane waves Reflection Variations Wave scattering |
title | Scattering from rough surfaces: A simple reflection phenomenon in fractional space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A58%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Scattering%20from%20rough%20surfaces:%20A%20simple%20reflection%20phenomenon%20in%20fractional%20space&rft.jtitle=arXiv.org&rft.au=Safdari,%20H&rft.date=2013-05-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2085253238%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085253238&rft_id=info:pmid/&rfr_iscdi=true |