An Improved Sub-Packetization Bound for Minimum Storage Regenerating Codes
Distributed storage systems employ codes to provide resilience to failure of multiple storage disks. Specifically, an \((n, k)\) MDS code stores \(k\) symbols in \(n\) disks such that the overall system is tolerant to a failure of up to \(n-k\) disks. However, access to at least \(k\) disks is still...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2013-05 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Goparaju, Sreechakra Tamo, Itzhak Calderbank, Robert |
description | Distributed storage systems employ codes to provide resilience to failure of multiple storage disks. Specifically, an \((n, k)\) MDS code stores \(k\) symbols in \(n\) disks such that the overall system is tolerant to a failure of up to \(n-k\) disks. However, access to at least \(k\) disks is still required to repair a single erasure. To reduce repair bandwidth, array codes are used where the stored symbols or packets are vectors of length \(\ell\). MDS array codes have the potential to repair a single erasure using a fraction \(1/(n-k)\) of data stored in the remaining disks. We introduce new methods of analysis which capitalize on the translation of the storage system problem into a geometric problem on a set of operators and subspaces. In particular, we ask the following question: for a given \((n, k)\), what is the minimum vector-length or sub-packetization factor \(\ell\) required to achieve this optimal fraction? For \emph{exact recovery} of systematic disks in an MDS code of low redundancy, i.e. \(k/n > 1/2\), the best known explicit codes \cite{WTB12} have a sub-packetization factor \(\ell\) which is exponential in \(k\). It has been conjectured \cite{TWB12} that for a fixed number of parity nodes, it is in fact necessary for \(\ell\) to be exponential in \(k\). In this paper, we provide a new log-squared converse bound on \(k\) for a given \(\ell\), and prove that \(k \le 2\log_2\ell\left(\log_{\delta}\ell+1\right)\), for an arbitrary number of parity nodes \(r = n-k\), where \(\delta = r/(r-1)\). |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085251700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085251700</sourcerecordid><originalsourceid>FETCH-proquest_journals_20852517003</originalsourceid><addsrcrecordid>eNqNjL0KwjAYAIMgWLTv8IFzIU2M7apFUUEQ616i_VpSbaL5cfDp7eADON1wx41IxDhPk3zB2ITEznWUUrbMmBA8IoeVhn3_tOaNNZThmpzk7Y5efaRXRsPaBF1DYywclVZ96KH0xsoW4YwtarRDplsoTI1uRsaNfDiMf5yS-XZzKXbJcH8FdL7qTLB6UBWjuWAizSjl_1Vfmww8Zg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085251700</pqid></control><display><type>article</type><title>An Improved Sub-Packetization Bound for Minimum Storage Regenerating Codes</title><source>Free E- Journals</source><creator>Goparaju, Sreechakra ; Tamo, Itzhak ; Calderbank, Robert</creator><creatorcontrib>Goparaju, Sreechakra ; Tamo, Itzhak ; Calderbank, Robert</creatorcontrib><description>Distributed storage systems employ codes to provide resilience to failure of multiple storage disks. Specifically, an \((n, k)\) MDS code stores \(k\) symbols in \(n\) disks such that the overall system is tolerant to a failure of up to \(n-k\) disks. However, access to at least \(k\) disks is still required to repair a single erasure. To reduce repair bandwidth, array codes are used where the stored symbols or packets are vectors of length \(\ell\). MDS array codes have the potential to repair a single erasure using a fraction \(1/(n-k)\) of data stored in the remaining disks. We introduce new methods of analysis which capitalize on the translation of the storage system problem into a geometric problem on a set of operators and subspaces. In particular, we ask the following question: for a given \((n, k)\), what is the minimum vector-length or sub-packetization factor \(\ell\) required to achieve this optimal fraction? For \emph{exact recovery} of systematic disks in an MDS code of low redundancy, i.e. \(k/n > 1/2\), the best known explicit codes \cite{WTB12} have a sub-packetization factor \(\ell\) which is exponential in \(k\). It has been conjectured \cite{TWB12} that for a fixed number of parity nodes, it is in fact necessary for \(\ell\) to be exponential in \(k\). In this paper, we provide a new log-squared converse bound on \(k\) for a given \(\ell\), and prove that \(k \le 2\log_2\ell\left(\log_{\delta}\ell+1\right)\), for an arbitrary number of parity nodes \(r = n-k\), where \(\delta = r/(r-1)\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Disks ; Mathematical analysis ; Nodes ; Parity ; Redundancy ; Repair ; Storage systems ; Subspaces ; Symbols</subject><ispartof>arXiv.org, 2013-05</ispartof><rights>2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Goparaju, Sreechakra</creatorcontrib><creatorcontrib>Tamo, Itzhak</creatorcontrib><creatorcontrib>Calderbank, Robert</creatorcontrib><title>An Improved Sub-Packetization Bound for Minimum Storage Regenerating Codes</title><title>arXiv.org</title><description>Distributed storage systems employ codes to provide resilience to failure of multiple storage disks. Specifically, an \((n, k)\) MDS code stores \(k\) symbols in \(n\) disks such that the overall system is tolerant to a failure of up to \(n-k\) disks. However, access to at least \(k\) disks is still required to repair a single erasure. To reduce repair bandwidth, array codes are used where the stored symbols or packets are vectors of length \(\ell\). MDS array codes have the potential to repair a single erasure using a fraction \(1/(n-k)\) of data stored in the remaining disks. We introduce new methods of analysis which capitalize on the translation of the storage system problem into a geometric problem on a set of operators and subspaces. In particular, we ask the following question: for a given \((n, k)\), what is the minimum vector-length or sub-packetization factor \(\ell\) required to achieve this optimal fraction? For \emph{exact recovery} of systematic disks in an MDS code of low redundancy, i.e. \(k/n > 1/2\), the best known explicit codes \cite{WTB12} have a sub-packetization factor \(\ell\) which is exponential in \(k\). It has been conjectured \cite{TWB12} that for a fixed number of parity nodes, it is in fact necessary for \(\ell\) to be exponential in \(k\). In this paper, we provide a new log-squared converse bound on \(k\) for a given \(\ell\), and prove that \(k \le 2\log_2\ell\left(\log_{\delta}\ell+1\right)\), for an arbitrary number of parity nodes \(r = n-k\), where \(\delta = r/(r-1)\).</description><subject>Disks</subject><subject>Mathematical analysis</subject><subject>Nodes</subject><subject>Parity</subject><subject>Redundancy</subject><subject>Repair</subject><subject>Storage systems</subject><subject>Subspaces</subject><subject>Symbols</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjL0KwjAYAIMgWLTv8IFzIU2M7apFUUEQ616i_VpSbaL5cfDp7eADON1wx41IxDhPk3zB2ITEznWUUrbMmBA8IoeVhn3_tOaNNZThmpzk7Y5efaRXRsPaBF1DYywclVZ96KH0xsoW4YwtarRDplsoTI1uRsaNfDiMf5yS-XZzKXbJcH8FdL7qTLB6UBWjuWAizSjl_1Vfmww8Zg</recordid><startdate>20130515</startdate><enddate>20130515</enddate><creator>Goparaju, Sreechakra</creator><creator>Tamo, Itzhak</creator><creator>Calderbank, Robert</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130515</creationdate><title>An Improved Sub-Packetization Bound for Minimum Storage Regenerating Codes</title><author>Goparaju, Sreechakra ; Tamo, Itzhak ; Calderbank, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20852517003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Disks</topic><topic>Mathematical analysis</topic><topic>Nodes</topic><topic>Parity</topic><topic>Redundancy</topic><topic>Repair</topic><topic>Storage systems</topic><topic>Subspaces</topic><topic>Symbols</topic><toplevel>online_resources</toplevel><creatorcontrib>Goparaju, Sreechakra</creatorcontrib><creatorcontrib>Tamo, Itzhak</creatorcontrib><creatorcontrib>Calderbank, Robert</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goparaju, Sreechakra</au><au>Tamo, Itzhak</au><au>Calderbank, Robert</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>An Improved Sub-Packetization Bound for Minimum Storage Regenerating Codes</atitle><jtitle>arXiv.org</jtitle><date>2013-05-15</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>Distributed storage systems employ codes to provide resilience to failure of multiple storage disks. Specifically, an \((n, k)\) MDS code stores \(k\) symbols in \(n\) disks such that the overall system is tolerant to a failure of up to \(n-k\) disks. However, access to at least \(k\) disks is still required to repair a single erasure. To reduce repair bandwidth, array codes are used where the stored symbols or packets are vectors of length \(\ell\). MDS array codes have the potential to repair a single erasure using a fraction \(1/(n-k)\) of data stored in the remaining disks. We introduce new methods of analysis which capitalize on the translation of the storage system problem into a geometric problem on a set of operators and subspaces. In particular, we ask the following question: for a given \((n, k)\), what is the minimum vector-length or sub-packetization factor \(\ell\) required to achieve this optimal fraction? For \emph{exact recovery} of systematic disks in an MDS code of low redundancy, i.e. \(k/n > 1/2\), the best known explicit codes \cite{WTB12} have a sub-packetization factor \(\ell\) which is exponential in \(k\). It has been conjectured \cite{TWB12} that for a fixed number of parity nodes, it is in fact necessary for \(\ell\) to be exponential in \(k\). In this paper, we provide a new log-squared converse bound on \(k\) for a given \(\ell\), and prove that \(k \le 2\log_2\ell\left(\log_{\delta}\ell+1\right)\), for an arbitrary number of parity nodes \(r = n-k\), where \(\delta = r/(r-1)\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2013-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2085251700 |
source | Free E- Journals |
subjects | Disks Mathematical analysis Nodes Parity Redundancy Repair Storage systems Subspaces Symbols |
title | An Improved Sub-Packetization Bound for Minimum Storage Regenerating Codes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A30%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=An%20Improved%20Sub-Packetization%20Bound%20for%20Minimum%20Storage%20Regenerating%20Codes&rft.jtitle=arXiv.org&rft.au=Goparaju,%20Sreechakra&rft.date=2013-05-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2085251700%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085251700&rft_id=info:pmid/&rfr_iscdi=true |