Transformation Method for Solving Hamilton-Jacobi-Bellman Equation for Constrained Dynamic Stochastic Optimal Allocation Problem

In this paper we propose and analyze a method based on the Riccati transformation for solving the evolutionary Hamilton-Jacobi-Bellman equation arising from the stochastic dynamic optimal allocation problem. We show how the fully nonlinear Hamilton-Jacobi-Bellman equation can be transformed into a q...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2013-07
Hauptverfasser: Kilianova, Sona, Sevcovic, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kilianova, Sona
Sevcovic, Daniel
description In this paper we propose and analyze a method based on the Riccati transformation for solving the evolutionary Hamilton-Jacobi-Bellman equation arising from the stochastic dynamic optimal allocation problem. We show how the fully nonlinear Hamilton-Jacobi-Bellman equation can be transformed into a quasi-linear parabolic equation whose diffusion function is obtained as the value function of certain parametric convex optimization problem. Although the diffusion function need not be sufficiently smooth, we are able to prove existence, uniqueness and derive useful bounds of classical H\"older smooth solutions. We furthermore construct a fully implicit iterative numerical scheme based on finite volume approximation of the governing equation. A numerical solution is compared to a semi-explicit traveling wave solution by means of the convergence ratio of the method. We compute optimal strategies for a portfolio investment problem motivated by the German DAX 30 Index as an example of application of the method.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085251550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085251550</sourcerecordid><originalsourceid>FETCH-proquest_journals_20852515503</originalsourceid><addsrcrecordid>eNqNi82KAjEQhIOwoLi-Q8DzQMwY9eovIiwr6F3amYxGOt2aZARvPrqzuA_gqYqq72uJjs7zQTYZat0WvRgvSik9Gmtj8o547gNQrDh4SI5J_th05lI2g9wx3h2d5Bq8w8SUbaDgo8tmFtEDyeWtfjt_8JwppgCObCkXD2qUQu4SF2eIqam_1-Q8oJwicvG2toGPaP23-KoAo-39Z1f0V8v9fJ1dA99qG9PhwnWg5jpoNTHaDIxR-WfUC4q1UU8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085251550</pqid></control><display><type>article</type><title>Transformation Method for Solving Hamilton-Jacobi-Bellman Equation for Constrained Dynamic Stochastic Optimal Allocation Problem</title><source>Free E- Journals</source><creator>Kilianova, Sona ; Sevcovic, Daniel</creator><creatorcontrib>Kilianova, Sona ; Sevcovic, Daniel</creatorcontrib><description>In this paper we propose and analyze a method based on the Riccati transformation for solving the evolutionary Hamilton-Jacobi-Bellman equation arising from the stochastic dynamic optimal allocation problem. We show how the fully nonlinear Hamilton-Jacobi-Bellman equation can be transformed into a quasi-linear parabolic equation whose diffusion function is obtained as the value function of certain parametric convex optimization problem. Although the diffusion function need not be sufficiently smooth, we are able to prove existence, uniqueness and derive useful bounds of classical H\"older smooth solutions. We furthermore construct a fully implicit iterative numerical scheme based on finite volume approximation of the governing equation. A numerical solution is compared to a semi-explicit traveling wave solution by means of the convergence ratio of the method. We compute optimal strategies for a portfolio investment problem motivated by the German DAX 30 Index as an example of application of the method.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computational geometry ; Convexity ; Economic models ; Iterative methods ; Optimization ; Transformations (mathematics) ; Traveling waves</subject><ispartof>arXiv.org, 2013-07</ispartof><rights>2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Kilianova, Sona</creatorcontrib><creatorcontrib>Sevcovic, Daniel</creatorcontrib><title>Transformation Method for Solving Hamilton-Jacobi-Bellman Equation for Constrained Dynamic Stochastic Optimal Allocation Problem</title><title>arXiv.org</title><description>In this paper we propose and analyze a method based on the Riccati transformation for solving the evolutionary Hamilton-Jacobi-Bellman equation arising from the stochastic dynamic optimal allocation problem. We show how the fully nonlinear Hamilton-Jacobi-Bellman equation can be transformed into a quasi-linear parabolic equation whose diffusion function is obtained as the value function of certain parametric convex optimization problem. Although the diffusion function need not be sufficiently smooth, we are able to prove existence, uniqueness and derive useful bounds of classical H\"older smooth solutions. We furthermore construct a fully implicit iterative numerical scheme based on finite volume approximation of the governing equation. A numerical solution is compared to a semi-explicit traveling wave solution by means of the convergence ratio of the method. We compute optimal strategies for a portfolio investment problem motivated by the German DAX 30 Index as an example of application of the method.</description><subject>Computational geometry</subject><subject>Convexity</subject><subject>Economic models</subject><subject>Iterative methods</subject><subject>Optimization</subject><subject>Transformations (mathematics)</subject><subject>Traveling waves</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi82KAjEQhIOwoLi-Q8DzQMwY9eovIiwr6F3amYxGOt2aZARvPrqzuA_gqYqq72uJjs7zQTYZat0WvRgvSik9Gmtj8o547gNQrDh4SI5J_th05lI2g9wx3h2d5Bq8w8SUbaDgo8tmFtEDyeWtfjt_8JwppgCObCkXD2qUQu4SF2eIqam_1-Q8oJwicvG2toGPaP23-KoAo-39Z1f0V8v9fJ1dA99qG9PhwnWg5jpoNTHaDIxR-WfUC4q1UU8</recordid><startdate>20130724</startdate><enddate>20130724</enddate><creator>Kilianova, Sona</creator><creator>Sevcovic, Daniel</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130724</creationdate><title>Transformation Method for Solving Hamilton-Jacobi-Bellman Equation for Constrained Dynamic Stochastic Optimal Allocation Problem</title><author>Kilianova, Sona ; Sevcovic, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20852515503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computational geometry</topic><topic>Convexity</topic><topic>Economic models</topic><topic>Iterative methods</topic><topic>Optimization</topic><topic>Transformations (mathematics)</topic><topic>Traveling waves</topic><toplevel>online_resources</toplevel><creatorcontrib>Kilianova, Sona</creatorcontrib><creatorcontrib>Sevcovic, Daniel</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kilianova, Sona</au><au>Sevcovic, Daniel</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Transformation Method for Solving Hamilton-Jacobi-Bellman Equation for Constrained Dynamic Stochastic Optimal Allocation Problem</atitle><jtitle>arXiv.org</jtitle><date>2013-07-24</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>In this paper we propose and analyze a method based on the Riccati transformation for solving the evolutionary Hamilton-Jacobi-Bellman equation arising from the stochastic dynamic optimal allocation problem. We show how the fully nonlinear Hamilton-Jacobi-Bellman equation can be transformed into a quasi-linear parabolic equation whose diffusion function is obtained as the value function of certain parametric convex optimization problem. Although the diffusion function need not be sufficiently smooth, we are able to prove existence, uniqueness and derive useful bounds of classical H\"older smooth solutions. We furthermore construct a fully implicit iterative numerical scheme based on finite volume approximation of the governing equation. A numerical solution is compared to a semi-explicit traveling wave solution by means of the convergence ratio of the method. We compute optimal strategies for a portfolio investment problem motivated by the German DAX 30 Index as an example of application of the method.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2013-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2085251550
source Free E- Journals
subjects Computational geometry
Convexity
Economic models
Iterative methods
Optimization
Transformations (mathematics)
Traveling waves
title Transformation Method for Solving Hamilton-Jacobi-Bellman Equation for Constrained Dynamic Stochastic Optimal Allocation Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T10%3A26%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Transformation%20Method%20for%20Solving%20Hamilton-Jacobi-Bellman%20Equation%20for%20Constrained%20Dynamic%20Stochastic%20Optimal%20Allocation%20Problem&rft.jtitle=arXiv.org&rft.au=Kilianova,%20Sona&rft.date=2013-07-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2085251550%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085251550&rft_id=info:pmid/&rfr_iscdi=true