Index definitions for nonlinear IAEs and DAEs: new classifications and numerical treatments

The definition of index for differential algebraic equations (DAEs) or integral algebraic equations (IAEs) in the linear case (time variable) depends only on the coefficients of integrals or differential operators and the coefficients of the unknown functions. Is this possible for the nonlinear case...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2013-05
1. Verfasser: Shiri, B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Shiri, B
description The definition of index for differential algebraic equations (DAEs) or integral algebraic equations (IAEs) in the linear case (time variable) depends only on the coefficients of integrals or differential operators and the coefficients of the unknown functions. Is this possible for the nonlinear case? In this paper we answer this question. In this paper, we generalize the index notion for the nonlinear case. One of the difficulties for nonlinear case, is its dependence on the exact solution which motivates us to give an important warning to whom want to solve DAEs using numerical methods such as Runge-Kutta, multistep or collocation methods.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085227712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085227712</sourcerecordid><originalsourceid>FETCH-proquest_journals_20852277123</originalsourceid><addsrcrecordid>eNqNi8EKgkAURYcgSMp_eNBasGemtIsyct-uhQz6hBF9U_NG6vMz6gNa3cM9985UgEmyifIt4kKFIl0cx7jLME2TQN1KbugFDbWGjTeWBVrrgC33hkk7KA-FgOYGThPsgekJda9FTGtq_T18LI8DuanpwTvSfiD2slLzVvdC4S-Xan0ursdLdHf2MZL4qrOj40lVGOcpYpZtMPlv9QZMHULY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085227712</pqid></control><display><type>article</type><title>Index definitions for nonlinear IAEs and DAEs: new classifications and numerical treatments</title><source>Free E- Journals</source><creator>Shiri, B</creator><creatorcontrib>Shiri, B</creatorcontrib><description>The definition of index for differential algebraic equations (DAEs) or integral algebraic equations (IAEs) in the linear case (time variable) depends only on the coefficients of integrals or differential operators and the coefficients of the unknown functions. Is this possible for the nonlinear case? In this paper we answer this question. In this paper, we generalize the index notion for the nonlinear case. One of the difficulties for nonlinear case, is its dependence on the exact solution which motivates us to give an important warning to whom want to solve DAEs using numerical methods such as Runge-Kutta, multistep or collocation methods.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Collocation methods ; Dependence ; Differential equations ; Integrals ; Numerical methods ; Operators (mathematics) ; Runge-Kutta method</subject><ispartof>arXiv.org, 2013-05</ispartof><rights>2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Shiri, B</creatorcontrib><title>Index definitions for nonlinear IAEs and DAEs: new classifications and numerical treatments</title><title>arXiv.org</title><description>The definition of index for differential algebraic equations (DAEs) or integral algebraic equations (IAEs) in the linear case (time variable) depends only on the coefficients of integrals or differential operators and the coefficients of the unknown functions. Is this possible for the nonlinear case? In this paper we answer this question. In this paper, we generalize the index notion for the nonlinear case. One of the difficulties for nonlinear case, is its dependence on the exact solution which motivates us to give an important warning to whom want to solve DAEs using numerical methods such as Runge-Kutta, multistep or collocation methods.</description><subject>Algebra</subject><subject>Collocation methods</subject><subject>Dependence</subject><subject>Differential equations</subject><subject>Integrals</subject><subject>Numerical methods</subject><subject>Operators (mathematics)</subject><subject>Runge-Kutta method</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi8EKgkAURYcgSMp_eNBasGemtIsyct-uhQz6hBF9U_NG6vMz6gNa3cM9985UgEmyifIt4kKFIl0cx7jLME2TQN1KbugFDbWGjTeWBVrrgC33hkk7KA-FgOYGThPsgekJda9FTGtq_T18LI8DuanpwTvSfiD2slLzVvdC4S-Xan0ursdLdHf2MZL4qrOj40lVGOcpYpZtMPlv9QZMHULY</recordid><startdate>20130516</startdate><enddate>20130516</enddate><creator>Shiri, B</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130516</creationdate><title>Index definitions for nonlinear IAEs and DAEs: new classifications and numerical treatments</title><author>Shiri, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20852277123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algebra</topic><topic>Collocation methods</topic><topic>Dependence</topic><topic>Differential equations</topic><topic>Integrals</topic><topic>Numerical methods</topic><topic>Operators (mathematics)</topic><topic>Runge-Kutta method</topic><toplevel>online_resources</toplevel><creatorcontrib>Shiri, B</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shiri, B</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Index definitions for nonlinear IAEs and DAEs: new classifications and numerical treatments</atitle><jtitle>arXiv.org</jtitle><date>2013-05-16</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>The definition of index for differential algebraic equations (DAEs) or integral algebraic equations (IAEs) in the linear case (time variable) depends only on the coefficients of integrals or differential operators and the coefficients of the unknown functions. Is this possible for the nonlinear case? In this paper we answer this question. In this paper, we generalize the index notion for the nonlinear case. One of the difficulties for nonlinear case, is its dependence on the exact solution which motivates us to give an important warning to whom want to solve DAEs using numerical methods such as Runge-Kutta, multistep or collocation methods.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2013-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2085227712
source Free E- Journals
subjects Algebra
Collocation methods
Dependence
Differential equations
Integrals
Numerical methods
Operators (mathematics)
Runge-Kutta method
title Index definitions for nonlinear IAEs and DAEs: new classifications and numerical treatments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A18%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Index%20definitions%20for%20nonlinear%20IAEs%20and%20DAEs:%20new%20classifications%20and%20numerical%20treatments&rft.jtitle=arXiv.org&rft.au=Shiri,%20B&rft.date=2013-05-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2085227712%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085227712&rft_id=info:pmid/&rfr_iscdi=true