Index definitions for nonlinear IAEs and DAEs: new classifications and numerical treatments
The definition of index for differential algebraic equations (DAEs) or integral algebraic equations (IAEs) in the linear case (time variable) depends only on the coefficients of integrals or differential operators and the coefficients of the unknown functions. Is this possible for the nonlinear case...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2013-05 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Shiri, B |
description | The definition of index for differential algebraic equations (DAEs) or integral algebraic equations (IAEs) in the linear case (time variable) depends only on the coefficients of integrals or differential operators and the coefficients of the unknown functions. Is this possible for the nonlinear case? In this paper we answer this question. In this paper, we generalize the index notion for the nonlinear case. One of the difficulties for nonlinear case, is its dependence on the exact solution which motivates us to give an important warning to whom want to solve DAEs using numerical methods such as Runge-Kutta, multistep or collocation methods. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085227712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085227712</sourcerecordid><originalsourceid>FETCH-proquest_journals_20852277123</originalsourceid><addsrcrecordid>eNqNi8EKgkAURYcgSMp_eNBasGemtIsyct-uhQz6hBF9U_NG6vMz6gNa3cM9985UgEmyifIt4kKFIl0cx7jLME2TQN1KbugFDbWGjTeWBVrrgC33hkk7KA-FgOYGThPsgekJda9FTGtq_T18LI8DuanpwTvSfiD2slLzVvdC4S-Xan0ursdLdHf2MZL4qrOj40lVGOcpYpZtMPlv9QZMHULY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085227712</pqid></control><display><type>article</type><title>Index definitions for nonlinear IAEs and DAEs: new classifications and numerical treatments</title><source>Free E- Journals</source><creator>Shiri, B</creator><creatorcontrib>Shiri, B</creatorcontrib><description>The definition of index for differential algebraic equations (DAEs) or integral algebraic equations (IAEs) in the linear case (time variable) depends only on the coefficients of integrals or differential operators and the coefficients of the unknown functions. Is this possible for the nonlinear case? In this paper we answer this question. In this paper, we generalize the index notion for the nonlinear case. One of the difficulties for nonlinear case, is its dependence on the exact solution which motivates us to give an important warning to whom want to solve DAEs using numerical methods such as Runge-Kutta, multistep or collocation methods.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Collocation methods ; Dependence ; Differential equations ; Integrals ; Numerical methods ; Operators (mathematics) ; Runge-Kutta method</subject><ispartof>arXiv.org, 2013-05</ispartof><rights>2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Shiri, B</creatorcontrib><title>Index definitions for nonlinear IAEs and DAEs: new classifications and numerical treatments</title><title>arXiv.org</title><description>The definition of index for differential algebraic equations (DAEs) or integral algebraic equations (IAEs) in the linear case (time variable) depends only on the coefficients of integrals or differential operators and the coefficients of the unknown functions. Is this possible for the nonlinear case? In this paper we answer this question. In this paper, we generalize the index notion for the nonlinear case. One of the difficulties for nonlinear case, is its dependence on the exact solution which motivates us to give an important warning to whom want to solve DAEs using numerical methods such as Runge-Kutta, multistep or collocation methods.</description><subject>Algebra</subject><subject>Collocation methods</subject><subject>Dependence</subject><subject>Differential equations</subject><subject>Integrals</subject><subject>Numerical methods</subject><subject>Operators (mathematics)</subject><subject>Runge-Kutta method</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi8EKgkAURYcgSMp_eNBasGemtIsyct-uhQz6hBF9U_NG6vMz6gNa3cM9985UgEmyifIt4kKFIl0cx7jLME2TQN1KbugFDbWGjTeWBVrrgC33hkk7KA-FgOYGThPsgekJda9FTGtq_T18LI8DuanpwTvSfiD2slLzVvdC4S-Xan0ursdLdHf2MZL4qrOj40lVGOcpYpZtMPlv9QZMHULY</recordid><startdate>20130516</startdate><enddate>20130516</enddate><creator>Shiri, B</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130516</creationdate><title>Index definitions for nonlinear IAEs and DAEs: new classifications and numerical treatments</title><author>Shiri, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20852277123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algebra</topic><topic>Collocation methods</topic><topic>Dependence</topic><topic>Differential equations</topic><topic>Integrals</topic><topic>Numerical methods</topic><topic>Operators (mathematics)</topic><topic>Runge-Kutta method</topic><toplevel>online_resources</toplevel><creatorcontrib>Shiri, B</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shiri, B</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Index definitions for nonlinear IAEs and DAEs: new classifications and numerical treatments</atitle><jtitle>arXiv.org</jtitle><date>2013-05-16</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>The definition of index for differential algebraic equations (DAEs) or integral algebraic equations (IAEs) in the linear case (time variable) depends only on the coefficients of integrals or differential operators and the coefficients of the unknown functions. Is this possible for the nonlinear case? In this paper we answer this question. In this paper, we generalize the index notion for the nonlinear case. One of the difficulties for nonlinear case, is its dependence on the exact solution which motivates us to give an important warning to whom want to solve DAEs using numerical methods such as Runge-Kutta, multistep or collocation methods.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2013-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2085227712 |
source | Free E- Journals |
subjects | Algebra Collocation methods Dependence Differential equations Integrals Numerical methods Operators (mathematics) Runge-Kutta method |
title | Index definitions for nonlinear IAEs and DAEs: new classifications and numerical treatments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A18%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Index%20definitions%20for%20nonlinear%20IAEs%20and%20DAEs:%20new%20classifications%20and%20numerical%20treatments&rft.jtitle=arXiv.org&rft.au=Shiri,%20B&rft.date=2013-05-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2085227712%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085227712&rft_id=info:pmid/&rfr_iscdi=true |