Ramanujan's cubic transformation and generalized modular equation

We study the quotient of hypergeometric functions \begin{equation*} \mu_{a}^*(r)=\frac{\pi}{2\sin{(\pi a)}}\frac{F(a,1-a;1;1-r^3)}{F(a,1-a;1;r^3)} \quad (r\in(0,1)) \end{equation*} in the theory of Ramanujan's generalized modular equation for \(a\in(0,1/2]\), find an infinite product formula fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2013-05
Hauptverfasser: Wang, Miaokun, Chu, Yuming, Jiang, Yueping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Wang, Miaokun
Chu, Yuming
Jiang, Yueping
description We study the quotient of hypergeometric functions \begin{equation*} \mu_{a}^*(r)=\frac{\pi}{2\sin{(\pi a)}}\frac{F(a,1-a;1;1-r^3)}{F(a,1-a;1;r^3)} \quad (r\in(0,1)) \end{equation*} in the theory of Ramanujan's generalized modular equation for \(a\in(0,1/2]\), find an infinite product formula for \(\mu_{1/3}^*(r)\) by use of the properties of \(\mu_{a}^*(r)\) and Ramanujan's cubic transformation. Besides, a new cubic transformation formula of hypergeometric function is given, which complements the Ramanujan's cubic transformation.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085221447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085221447</sourcerecordid><originalsourceid>FETCH-proquest_journals_20852214473</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtOwQcnArpTWK7iijO4l6uTSot7Y3Nz-LTK-IDOJ3hfAuWgZRlUSuAFctDGIQQsK9Aa5mxwxUnpDQg7QJv071vefRIoXN-wtg74kiGPyxZj2P_soZPzqQRPbdz-oINW3Y4Bpv_umbb8-l2vBRP7-ZkQ2wGlzx9VgOi1gClUpX8T70ByYg6Fw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085221447</pqid></control><display><type>article</type><title>Ramanujan's cubic transformation and generalized modular equation</title><source>Free E- Journals</source><creator>Wang, Miaokun ; Chu, Yuming ; Jiang, Yueping</creator><creatorcontrib>Wang, Miaokun ; Chu, Yuming ; Jiang, Yueping</creatorcontrib><description>We study the quotient of hypergeometric functions \begin{equation*} \mu_{a}^*(r)=\frac{\pi}{2\sin{(\pi a)}}\frac{F(a,1-a;1;1-r^3)}{F(a,1-a;1;r^3)} \quad (r\in(0,1)) \end{equation*} in the theory of Ramanujan's generalized modular equation for \(a\in(0,1/2]\), find an infinite product formula for \(\mu_{1/3}^*(r)\) by use of the properties of \(\mu_{a}^*(r)\) and Ramanujan's cubic transformation. Besides, a new cubic transformation formula of hypergeometric function is given, which complements the Ramanujan's cubic transformation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Formulas (mathematics) ; Hypergeometric functions ; Transformations (mathematics)</subject><ispartof>arXiv.org, 2013-05</ispartof><rights>2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Wang, Miaokun</creatorcontrib><creatorcontrib>Chu, Yuming</creatorcontrib><creatorcontrib>Jiang, Yueping</creatorcontrib><title>Ramanujan's cubic transformation and generalized modular equation</title><title>arXiv.org</title><description>We study the quotient of hypergeometric functions \begin{equation*} \mu_{a}^*(r)=\frac{\pi}{2\sin{(\pi a)}}\frac{F(a,1-a;1;1-r^3)}{F(a,1-a;1;r^3)} \quad (r\in(0,1)) \end{equation*} in the theory of Ramanujan's generalized modular equation for \(a\in(0,1/2]\), find an infinite product formula for \(\mu_{1/3}^*(r)\) by use of the properties of \(\mu_{a}^*(r)\) and Ramanujan's cubic transformation. Besides, a new cubic transformation formula of hypergeometric function is given, which complements the Ramanujan's cubic transformation.</description><subject>Formulas (mathematics)</subject><subject>Hypergeometric functions</subject><subject>Transformations (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtOwQcnArpTWK7iijO4l6uTSot7Y3Nz-LTK-IDOJ3hfAuWgZRlUSuAFctDGIQQsK9Aa5mxwxUnpDQg7QJv071vefRIoXN-wtg74kiGPyxZj2P_soZPzqQRPbdz-oINW3Y4Bpv_umbb8-l2vBRP7-ZkQ2wGlzx9VgOi1gClUpX8T70ByYg6Fw</recordid><startdate>20130528</startdate><enddate>20130528</enddate><creator>Wang, Miaokun</creator><creator>Chu, Yuming</creator><creator>Jiang, Yueping</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130528</creationdate><title>Ramanujan's cubic transformation and generalized modular equation</title><author>Wang, Miaokun ; Chu, Yuming ; Jiang, Yueping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20852214473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Formulas (mathematics)</topic><topic>Hypergeometric functions</topic><topic>Transformations (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Miaokun</creatorcontrib><creatorcontrib>Chu, Yuming</creatorcontrib><creatorcontrib>Jiang, Yueping</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Miaokun</au><au>Chu, Yuming</au><au>Jiang, Yueping</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Ramanujan's cubic transformation and generalized modular equation</atitle><jtitle>arXiv.org</jtitle><date>2013-05-28</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>We study the quotient of hypergeometric functions \begin{equation*} \mu_{a}^*(r)=\frac{\pi}{2\sin{(\pi a)}}\frac{F(a,1-a;1;1-r^3)}{F(a,1-a;1;r^3)} \quad (r\in(0,1)) \end{equation*} in the theory of Ramanujan's generalized modular equation for \(a\in(0,1/2]\), find an infinite product formula for \(\mu_{1/3}^*(r)\) by use of the properties of \(\mu_{a}^*(r)\) and Ramanujan's cubic transformation. Besides, a new cubic transformation formula of hypergeometric function is given, which complements the Ramanujan's cubic transformation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2013-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2085221447
source Free E- Journals
subjects Formulas (mathematics)
Hypergeometric functions
Transformations (mathematics)
title Ramanujan's cubic transformation and generalized modular equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A10%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Ramanujan's%20cubic%20transformation%20and%20generalized%20modular%20equation&rft.jtitle=arXiv.org&rft.au=Wang,%20Miaokun&rft.date=2013-05-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2085221447%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085221447&rft_id=info:pmid/&rfr_iscdi=true