Non-identifiability, equivalence classes, and attribute-specific classification in Q-matrix based Cognitive Diagnosis Models

There has been growing interest in recent years in Q-matrix based cognitive diagnosis models. Parameter estimation and respondent classification under these models may suffer due to identifiability issues. Non-identifiability can be described by a partition separating attribute profiles into groups...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2013-03
Hauptverfasser: Zhang, Stephanie S, DeCarlo, Lawrence T, Ying, Zhiliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zhang, Stephanie S
DeCarlo, Lawrence T
Ying, Zhiliang
description There has been growing interest in recent years in Q-matrix based cognitive diagnosis models. Parameter estimation and respondent classification under these models may suffer due to identifiability issues. Non-identifiability can be described by a partition separating attribute profiles into groups of those with identical likelihoods. Marginal identifiability concerns the identifiability of individual attributes. Maximum likelihood estimation of the proportion of respondents within each equivalence class is consistent, making possible a new measure of assessment quality reporting the proportion of respondents for whom each individual attribute is marginally identifiable. Arising from this is a new posterior-based classification method adjusting for non-identifiability.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085155137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085155137</sourcerecordid><originalsourceid>FETCH-proquest_journals_20851551373</originalsourceid><addsrcrecordid>eNqNi0FqAkEQRRshoBjvUJCtDTPdtrrXBDcRAu6lZqaUkk61TvVIAh4-I-YArv6D9_7AjJz3pV3OnBuaieqpKAo3X7gQ_MjctkksNySZD4wVR86_U6BLx1eMJDVBHVGVdAooDWDOLVddJqtnqvtL_fB3wsxJgAW-7Df22Q9UqNTAKh2FM18J1oxHScoKn6mhqK_m5YBRafK_Y_P28b5bbey5TZeONO9PqWulV3tXLEMZQukX_rnqD0SoT_E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085155137</pqid></control><display><type>article</type><title>Non-identifiability, equivalence classes, and attribute-specific classification in Q-matrix based Cognitive Diagnosis Models</title><source>Free E- Journals</source><creator>Zhang, Stephanie S ; DeCarlo, Lawrence T ; Ying, Zhiliang</creator><creatorcontrib>Zhang, Stephanie S ; DeCarlo, Lawrence T ; Ying, Zhiliang</creatorcontrib><description>There has been growing interest in recent years in Q-matrix based cognitive diagnosis models. Parameter estimation and respondent classification under these models may suffer due to identifiability issues. Non-identifiability can be described by a partition separating attribute profiles into groups of those with identical likelihoods. Marginal identifiability concerns the identifiability of individual attributes. Maximum likelihood estimation of the proportion of respondents within each equivalence class is consistent, making possible a new measure of assessment quality reporting the proportion of respondents for whom each individual attribute is marginally identifiable. Arising from this is a new posterior-based classification method adjusting for non-identifiability.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Classification ; Diagnosis ; Equivalence ; Maximum likelihood estimation ; Parameter estimation ; Quality assessment</subject><ispartof>arXiv.org, 2013-03</ispartof><rights>2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Zhang, Stephanie S</creatorcontrib><creatorcontrib>DeCarlo, Lawrence T</creatorcontrib><creatorcontrib>Ying, Zhiliang</creatorcontrib><title>Non-identifiability, equivalence classes, and attribute-specific classification in Q-matrix based Cognitive Diagnosis Models</title><title>arXiv.org</title><description>There has been growing interest in recent years in Q-matrix based cognitive diagnosis models. Parameter estimation and respondent classification under these models may suffer due to identifiability issues. Non-identifiability can be described by a partition separating attribute profiles into groups of those with identical likelihoods. Marginal identifiability concerns the identifiability of individual attributes. Maximum likelihood estimation of the proportion of respondents within each equivalence class is consistent, making possible a new measure of assessment quality reporting the proportion of respondents for whom each individual attribute is marginally identifiable. Arising from this is a new posterior-based classification method adjusting for non-identifiability.</description><subject>Classification</subject><subject>Diagnosis</subject><subject>Equivalence</subject><subject>Maximum likelihood estimation</subject><subject>Parameter estimation</subject><subject>Quality assessment</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi0FqAkEQRRshoBjvUJCtDTPdtrrXBDcRAu6lZqaUkk61TvVIAh4-I-YArv6D9_7AjJz3pV3OnBuaieqpKAo3X7gQ_MjctkksNySZD4wVR86_U6BLx1eMJDVBHVGVdAooDWDOLVddJqtnqvtL_fB3wsxJgAW-7Df22Q9UqNTAKh2FM18J1oxHScoKn6mhqK_m5YBRafK_Y_P28b5bbey5TZeONO9PqWulV3tXLEMZQukX_rnqD0SoT_E</recordid><startdate>20130302</startdate><enddate>20130302</enddate><creator>Zhang, Stephanie S</creator><creator>DeCarlo, Lawrence T</creator><creator>Ying, Zhiliang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130302</creationdate><title>Non-identifiability, equivalence classes, and attribute-specific classification in Q-matrix based Cognitive Diagnosis Models</title><author>Zhang, Stephanie S ; DeCarlo, Lawrence T ; Ying, Zhiliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20851551373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Classification</topic><topic>Diagnosis</topic><topic>Equivalence</topic><topic>Maximum likelihood estimation</topic><topic>Parameter estimation</topic><topic>Quality assessment</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Stephanie S</creatorcontrib><creatorcontrib>DeCarlo, Lawrence T</creatorcontrib><creatorcontrib>Ying, Zhiliang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Stephanie S</au><au>DeCarlo, Lawrence T</au><au>Ying, Zhiliang</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Non-identifiability, equivalence classes, and attribute-specific classification in Q-matrix based Cognitive Diagnosis Models</atitle><jtitle>arXiv.org</jtitle><date>2013-03-02</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>There has been growing interest in recent years in Q-matrix based cognitive diagnosis models. Parameter estimation and respondent classification under these models may suffer due to identifiability issues. Non-identifiability can be described by a partition separating attribute profiles into groups of those with identical likelihoods. Marginal identifiability concerns the identifiability of individual attributes. Maximum likelihood estimation of the proportion of respondents within each equivalence class is consistent, making possible a new measure of assessment quality reporting the proportion of respondents for whom each individual attribute is marginally identifiable. Arising from this is a new posterior-based classification method adjusting for non-identifiability.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2013-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2085155137
source Free E- Journals
subjects Classification
Diagnosis
Equivalence
Maximum likelihood estimation
Parameter estimation
Quality assessment
title Non-identifiability, equivalence classes, and attribute-specific classification in Q-matrix based Cognitive Diagnosis Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A37%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Non-identifiability,%20equivalence%20classes,%20and%20attribute-specific%20classification%20in%20Q-matrix%20based%20Cognitive%20Diagnosis%20Models&rft.jtitle=arXiv.org&rft.au=Zhang,%20Stephanie%20S&rft.date=2013-03-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2085155137%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085155137&rft_id=info:pmid/&rfr_iscdi=true