Model-based Path Integral Stochastic Control: A Bayesian Nonparametric Approach
Over the last few years, sampling-based stochastic optimal control (SOC) frameworks have shown impressive performances in reinforcement learning (RL) with applications in robotics. However, such approaches require a large amount of samples from many interactions with the physical systems. To improve...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2014-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Pan, Yunpeng Theodorou, Evangelos A Kontitsis, Michail |
description | Over the last few years, sampling-based stochastic optimal control (SOC) frameworks have shown impressive performances in reinforcement learning (RL) with applications in robotics. However, such approaches require a large amount of samples from many interactions with the physical systems. To improve learning efficiency, we present a novel model-based and data-driven SOC framework based on path integral formulation and Gaussian processes (GPs). The proposed approach learns explicit and time-varying optimal controls autonomously from limited sampled data. Based on this framework, we propose an iterative control scheme with improved applicability in higher-dimensional and more complex control tasks. We demonstrate the effectiveness and efficiency of the proposed framework using two nontrivial examples. Compared to state-of-the-art RL methods, the proposed framework features superior control learning efficiency. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085063709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085063709</sourcerecordid><originalsourceid>FETCH-proquest_journals_20850637093</originalsourceid><addsrcrecordid>eNqNyr0OgjAUQOHGxESivEMTZ5LaWkA3JBod_El0J1eoAqm92JbBt5fBB3A6w3dGJOBCLKJ0yfmEhM61jDEeJ1xKEZDzESulozs4VdEL-JoejFdPC5pePZY1ON-UNEfjLeo1zegGPso1YOgJTQcWXsrb4ci6ziKU9YyMH6CdCn-dkvlue8v30cDvXjlftNhbM1DBWSpZLBK2Ev9dX9QuPiI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085063709</pqid></control><display><type>article</type><title>Model-based Path Integral Stochastic Control: A Bayesian Nonparametric Approach</title><source>Free E- Journals</source><creator>Pan, Yunpeng ; Theodorou, Evangelos A ; Kontitsis, Michail</creator><creatorcontrib>Pan, Yunpeng ; Theodorou, Evangelos A ; Kontitsis, Michail</creatorcontrib><description>Over the last few years, sampling-based stochastic optimal control (SOC) frameworks have shown impressive performances in reinforcement learning (RL) with applications in robotics. However, such approaches require a large amount of samples from many interactions with the physical systems. To improve learning efficiency, we present a novel model-based and data-driven SOC framework based on path integral formulation and Gaussian processes (GPs). The proposed approach learns explicit and time-varying optimal controls autonomously from limited sampled data. Based on this framework, we propose an iterative control scheme with improved applicability in higher-dimensional and more complex control tasks. We demonstrate the effectiveness and efficiency of the proposed framework using two nontrivial examples. Compared to state-of-the-art RL methods, the proposed framework features superior control learning efficiency.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bayesian analysis ; Control tasks ; Efficiency ; Gaussian process ; Integrals ; Iterative methods ; Machine learning ; Optimal control ; Robotics ; Stochastic processes ; Task complexity</subject><ispartof>arXiv.org, 2014-12</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Pan, Yunpeng</creatorcontrib><creatorcontrib>Theodorou, Evangelos A</creatorcontrib><creatorcontrib>Kontitsis, Michail</creatorcontrib><title>Model-based Path Integral Stochastic Control: A Bayesian Nonparametric Approach</title><title>arXiv.org</title><description>Over the last few years, sampling-based stochastic optimal control (SOC) frameworks have shown impressive performances in reinforcement learning (RL) with applications in robotics. However, such approaches require a large amount of samples from many interactions with the physical systems. To improve learning efficiency, we present a novel model-based and data-driven SOC framework based on path integral formulation and Gaussian processes (GPs). The proposed approach learns explicit and time-varying optimal controls autonomously from limited sampled data. Based on this framework, we propose an iterative control scheme with improved applicability in higher-dimensional and more complex control tasks. We demonstrate the effectiveness and efficiency of the proposed framework using two nontrivial examples. Compared to state-of-the-art RL methods, the proposed framework features superior control learning efficiency.</description><subject>Bayesian analysis</subject><subject>Control tasks</subject><subject>Efficiency</subject><subject>Gaussian process</subject><subject>Integrals</subject><subject>Iterative methods</subject><subject>Machine learning</subject><subject>Optimal control</subject><subject>Robotics</subject><subject>Stochastic processes</subject><subject>Task complexity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyr0OgjAUQOHGxESivEMTZ5LaWkA3JBod_El0J1eoAqm92JbBt5fBB3A6w3dGJOBCLKJ0yfmEhM61jDEeJ1xKEZDzESulozs4VdEL-JoejFdPC5pePZY1ON-UNEfjLeo1zegGPso1YOgJTQcWXsrb4ci6ziKU9YyMH6CdCn-dkvlue8v30cDvXjlftNhbM1DBWSpZLBK2Ev9dX9QuPiI</recordid><startdate>20141209</startdate><enddate>20141209</enddate><creator>Pan, Yunpeng</creator><creator>Theodorou, Evangelos A</creator><creator>Kontitsis, Michail</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20141209</creationdate><title>Model-based Path Integral Stochastic Control: A Bayesian Nonparametric Approach</title><author>Pan, Yunpeng ; Theodorou, Evangelos A ; Kontitsis, Michail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20850637093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bayesian analysis</topic><topic>Control tasks</topic><topic>Efficiency</topic><topic>Gaussian process</topic><topic>Integrals</topic><topic>Iterative methods</topic><topic>Machine learning</topic><topic>Optimal control</topic><topic>Robotics</topic><topic>Stochastic processes</topic><topic>Task complexity</topic><toplevel>online_resources</toplevel><creatorcontrib>Pan, Yunpeng</creatorcontrib><creatorcontrib>Theodorou, Evangelos A</creatorcontrib><creatorcontrib>Kontitsis, Michail</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Yunpeng</au><au>Theodorou, Evangelos A</au><au>Kontitsis, Michail</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Model-based Path Integral Stochastic Control: A Bayesian Nonparametric Approach</atitle><jtitle>arXiv.org</jtitle><date>2014-12-09</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>Over the last few years, sampling-based stochastic optimal control (SOC) frameworks have shown impressive performances in reinforcement learning (RL) with applications in robotics. However, such approaches require a large amount of samples from many interactions with the physical systems. To improve learning efficiency, we present a novel model-based and data-driven SOC framework based on path integral formulation and Gaussian processes (GPs). The proposed approach learns explicit and time-varying optimal controls autonomously from limited sampled data. Based on this framework, we propose an iterative control scheme with improved applicability in higher-dimensional and more complex control tasks. We demonstrate the effectiveness and efficiency of the proposed framework using two nontrivial examples. Compared to state-of-the-art RL methods, the proposed framework features superior control learning efficiency.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2014-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2085063709 |
source | Free E- Journals |
subjects | Bayesian analysis Control tasks Efficiency Gaussian process Integrals Iterative methods Machine learning Optimal control Robotics Stochastic processes Task complexity |
title | Model-based Path Integral Stochastic Control: A Bayesian Nonparametric Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A48%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Model-based%20Path%20Integral%20Stochastic%20Control:%20A%20Bayesian%20Nonparametric%20Approach&rft.jtitle=arXiv.org&rft.au=Pan,%20Yunpeng&rft.date=2014-12-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2085063709%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085063709&rft_id=info:pmid/&rfr_iscdi=true |