Equivariant stable homotopy methods in the algebraic K-theory of infinite groups

Equivariant homotopy methods developed over the last 20 years lead to recent breakthroughs in the Borel isomorphism conjectures for Loday assembly maps in K- and L-theories. An important consequence of these algebraic conjectures is the topological rigidity of compact aspherical manifolds. Our goal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-06
Hauptverfasser: Carlsson, Gunnar, Goldfarb, Boris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Carlsson, Gunnar
Goldfarb, Boris
description Equivariant homotopy methods developed over the last 20 years lead to recent breakthroughs in the Borel isomorphism conjectures for Loday assembly maps in K- and L-theories. An important consequence of these algebraic conjectures is the topological rigidity of compact aspherical manifolds. Our goal is to strip the basic idea to the core and follow the evolution over time in order to explain the advantages of the flexible state that exists today. We end with an outline of the proof of the Borel conjecture in algebraic K-theory for groups of finite asymptotic dimension. We also discuss the relation of these methods to the recent work on the Farrell-Jones conjecture.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085042948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085042948</sourcerecordid><originalsourceid>FETCH-proquest_journals_20850429483</originalsourceid><addsrcrecordid>eNqNikELgjAYQEcQJOV_-KCzsDYtO4cRdOnQXWZNneg-3b4F_vs89AM6PR7vrVgkpDwkeSrEhsXed5xzcTyJLJMRexRTMB_ljLIEnlTVa2hxQMJxhkFTi28PxgK1GlTf6Mop84J7sji6GbBeYm2sIQ2NwzD6HVvXqvc6_nHL9tfiebklo8MpaE9lh8HZJZWC5xlPxTnN5X_XF6mzP3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085042948</pqid></control><display><type>article</type><title>Equivariant stable homotopy methods in the algebraic K-theory of infinite groups</title><source>Freely Accessible Journals</source><creator>Carlsson, Gunnar ; Goldfarb, Boris</creator><creatorcontrib>Carlsson, Gunnar ; Goldfarb, Boris</creatorcontrib><description>Equivariant homotopy methods developed over the last 20 years lead to recent breakthroughs in the Borel isomorphism conjectures for Loday assembly maps in K- and L-theories. An important consequence of these algebraic conjectures is the topological rigidity of compact aspherical manifolds. Our goal is to strip the basic idea to the core and follow the evolution over time in order to explain the advantages of the flexible state that exists today. We end with an outline of the proof of the Borel conjecture in algebraic K-theory for groups of finite asymptotic dimension. We also discuss the relation of these methods to the recent work on the Farrell-Jones conjecture.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Asymptotic methods ; Group theory ; Isomorphism</subject><ispartof>arXiv.org, 2019-06</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Carlsson, Gunnar</creatorcontrib><creatorcontrib>Goldfarb, Boris</creatorcontrib><title>Equivariant stable homotopy methods in the algebraic K-theory of infinite groups</title><title>arXiv.org</title><description>Equivariant homotopy methods developed over the last 20 years lead to recent breakthroughs in the Borel isomorphism conjectures for Loday assembly maps in K- and L-theories. An important consequence of these algebraic conjectures is the topological rigidity of compact aspherical manifolds. Our goal is to strip the basic idea to the core and follow the evolution over time in order to explain the advantages of the flexible state that exists today. We end with an outline of the proof of the Borel conjecture in algebraic K-theory for groups of finite asymptotic dimension. We also discuss the relation of these methods to the recent work on the Farrell-Jones conjecture.</description><subject>Algebra</subject><subject>Asymptotic methods</subject><subject>Group theory</subject><subject>Isomorphism</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNikELgjAYQEcQJOV_-KCzsDYtO4cRdOnQXWZNneg-3b4F_vs89AM6PR7vrVgkpDwkeSrEhsXed5xzcTyJLJMRexRTMB_ljLIEnlTVa2hxQMJxhkFTi28PxgK1GlTf6Mop84J7sji6GbBeYm2sIQ2NwzD6HVvXqvc6_nHL9tfiebklo8MpaE9lh8HZJZWC5xlPxTnN5X_XF6mzP3A</recordid><startdate>20190622</startdate><enddate>20190622</enddate><creator>Carlsson, Gunnar</creator><creator>Goldfarb, Boris</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190622</creationdate><title>Equivariant stable homotopy methods in the algebraic K-theory of infinite groups</title><author>Carlsson, Gunnar ; Goldfarb, Boris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20850429483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>Asymptotic methods</topic><topic>Group theory</topic><topic>Isomorphism</topic><toplevel>online_resources</toplevel><creatorcontrib>Carlsson, Gunnar</creatorcontrib><creatorcontrib>Goldfarb, Boris</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carlsson, Gunnar</au><au>Goldfarb, Boris</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Equivariant stable homotopy methods in the algebraic K-theory of infinite groups</atitle><jtitle>arXiv.org</jtitle><date>2019-06-22</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Equivariant homotopy methods developed over the last 20 years lead to recent breakthroughs in the Borel isomorphism conjectures for Loday assembly maps in K- and L-theories. An important consequence of these algebraic conjectures is the topological rigidity of compact aspherical manifolds. Our goal is to strip the basic idea to the core and follow the evolution over time in order to explain the advantages of the flexible state that exists today. We end with an outline of the proof of the Borel conjecture in algebraic K-theory for groups of finite asymptotic dimension. We also discuss the relation of these methods to the recent work on the Farrell-Jones conjecture.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2085042948
source Freely Accessible Journals
subjects Algebra
Asymptotic methods
Group theory
Isomorphism
title Equivariant stable homotopy methods in the algebraic K-theory of infinite groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T23%3A47%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Equivariant%20stable%20homotopy%20methods%20in%20the%20algebraic%20K-theory%20of%20infinite%20groups&rft.jtitle=arXiv.org&rft.au=Carlsson,%20Gunnar&rft.date=2019-06-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2085042948%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085042948&rft_id=info:pmid/&rfr_iscdi=true