Equivariant stable homotopy methods in the algebraic K-theory of infinite groups
Equivariant homotopy methods developed over the last 20 years lead to recent breakthroughs in the Borel isomorphism conjectures for Loday assembly maps in K- and L-theories. An important consequence of these algebraic conjectures is the topological rigidity of compact aspherical manifolds. Our goal...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-06 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Carlsson, Gunnar Goldfarb, Boris |
description | Equivariant homotopy methods developed over the last 20 years lead to recent breakthroughs in the Borel isomorphism conjectures for Loday assembly maps in K- and L-theories. An important consequence of these algebraic conjectures is the topological rigidity of compact aspherical manifolds. Our goal is to strip the basic idea to the core and follow the evolution over time in order to explain the advantages of the flexible state that exists today. We end with an outline of the proof of the Borel conjecture in algebraic K-theory for groups of finite asymptotic dimension. We also discuss the relation of these methods to the recent work on the Farrell-Jones conjecture. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085042948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085042948</sourcerecordid><originalsourceid>FETCH-proquest_journals_20850429483</originalsourceid><addsrcrecordid>eNqNikELgjAYQEcQJOV_-KCzsDYtO4cRdOnQXWZNneg-3b4F_vs89AM6PR7vrVgkpDwkeSrEhsXed5xzcTyJLJMRexRTMB_ljLIEnlTVa2hxQMJxhkFTi28PxgK1GlTf6Mop84J7sji6GbBeYm2sIQ2NwzD6HVvXqvc6_nHL9tfiebklo8MpaE9lh8HZJZWC5xlPxTnN5X_XF6mzP3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085042948</pqid></control><display><type>article</type><title>Equivariant stable homotopy methods in the algebraic K-theory of infinite groups</title><source>Freely Accessible Journals</source><creator>Carlsson, Gunnar ; Goldfarb, Boris</creator><creatorcontrib>Carlsson, Gunnar ; Goldfarb, Boris</creatorcontrib><description>Equivariant homotopy methods developed over the last 20 years lead to recent breakthroughs in the Borel isomorphism conjectures for Loday assembly maps in K- and L-theories. An important consequence of these algebraic conjectures is the topological rigidity of compact aspherical manifolds. Our goal is to strip the basic idea to the core and follow the evolution over time in order to explain the advantages of the flexible state that exists today. We end with an outline of the proof of the Borel conjecture in algebraic K-theory for groups of finite asymptotic dimension. We also discuss the relation of these methods to the recent work on the Farrell-Jones conjecture.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Asymptotic methods ; Group theory ; Isomorphism</subject><ispartof>arXiv.org, 2019-06</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Carlsson, Gunnar</creatorcontrib><creatorcontrib>Goldfarb, Boris</creatorcontrib><title>Equivariant stable homotopy methods in the algebraic K-theory of infinite groups</title><title>arXiv.org</title><description>Equivariant homotopy methods developed over the last 20 years lead to recent breakthroughs in the Borel isomorphism conjectures for Loday assembly maps in K- and L-theories. An important consequence of these algebraic conjectures is the topological rigidity of compact aspherical manifolds. Our goal is to strip the basic idea to the core and follow the evolution over time in order to explain the advantages of the flexible state that exists today. We end with an outline of the proof of the Borel conjecture in algebraic K-theory for groups of finite asymptotic dimension. We also discuss the relation of these methods to the recent work on the Farrell-Jones conjecture.</description><subject>Algebra</subject><subject>Asymptotic methods</subject><subject>Group theory</subject><subject>Isomorphism</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNikELgjAYQEcQJOV_-KCzsDYtO4cRdOnQXWZNneg-3b4F_vs89AM6PR7vrVgkpDwkeSrEhsXed5xzcTyJLJMRexRTMB_ljLIEnlTVa2hxQMJxhkFTi28PxgK1GlTf6Mop84J7sji6GbBeYm2sIQ2NwzD6HVvXqvc6_nHL9tfiebklo8MpaE9lh8HZJZWC5xlPxTnN5X_XF6mzP3A</recordid><startdate>20190622</startdate><enddate>20190622</enddate><creator>Carlsson, Gunnar</creator><creator>Goldfarb, Boris</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190622</creationdate><title>Equivariant stable homotopy methods in the algebraic K-theory of infinite groups</title><author>Carlsson, Gunnar ; Goldfarb, Boris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20850429483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>Asymptotic methods</topic><topic>Group theory</topic><topic>Isomorphism</topic><toplevel>online_resources</toplevel><creatorcontrib>Carlsson, Gunnar</creatorcontrib><creatorcontrib>Goldfarb, Boris</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carlsson, Gunnar</au><au>Goldfarb, Boris</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Equivariant stable homotopy methods in the algebraic K-theory of infinite groups</atitle><jtitle>arXiv.org</jtitle><date>2019-06-22</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Equivariant homotopy methods developed over the last 20 years lead to recent breakthroughs in the Borel isomorphism conjectures for Loday assembly maps in K- and L-theories. An important consequence of these algebraic conjectures is the topological rigidity of compact aspherical manifolds. Our goal is to strip the basic idea to the core and follow the evolution over time in order to explain the advantages of the flexible state that exists today. We end with an outline of the proof of the Borel conjecture in algebraic K-theory for groups of finite asymptotic dimension. We also discuss the relation of these methods to the recent work on the Farrell-Jones conjecture.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2085042948 |
source | Freely Accessible Journals |
subjects | Algebra Asymptotic methods Group theory Isomorphism |
title | Equivariant stable homotopy methods in the algebraic K-theory of infinite groups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T23%3A47%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Equivariant%20stable%20homotopy%20methods%20in%20the%20algebraic%20K-theory%20of%20infinite%20groups&rft.jtitle=arXiv.org&rft.au=Carlsson,%20Gunnar&rft.date=2019-06-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2085042948%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085042948&rft_id=info:pmid/&rfr_iscdi=true |