Functional correspondence by matrix completion

In this paper, we consider the problem of finding dense intrinsic correspondence between manifolds using the recently introduced functional framework. We pose the functional correspondence problem as matrix completion with manifold geometric structure and inducing functional localization with the \(...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2014-12
Hauptverfasser: Kovnatsky, Artiom, Bronstein, Michael M, Bresson, Xavier, Vandergheynst, Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kovnatsky, Artiom
Bronstein, Michael M
Bresson, Xavier
Vandergheynst, Pierre
description In this paper, we consider the problem of finding dense intrinsic correspondence between manifolds using the recently introduced functional framework. We pose the functional correspondence problem as matrix completion with manifold geometric structure and inducing functional localization with the \(L_1\) norm. We discuss efficient numerical procedures for the solution of our problem. Our method compares favorably to the accuracy of state-of-the-art correspondence algorithms on non-rigid shape matching benchmarks, and is especially advantageous in settings when only scarce data is available.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085037154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085037154</sourcerecordid><originalsourceid>FETCH-proquest_journals_20850371543</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQcyvNSy7JzM9LzFFIzi8qSi0uyM9LSc1LTlVIqlTITSwpyqwASuQW5KSCVPEwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSIqBhxfFGBhamBsbmhqYmxsSpAgBNoTMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085037154</pqid></control><display><type>article</type><title>Functional correspondence by matrix completion</title><source>Free E- Journals</source><creator>Kovnatsky, Artiom ; Bronstein, Michael M ; Bresson, Xavier ; Vandergheynst, Pierre</creator><creatorcontrib>Kovnatsky, Artiom ; Bronstein, Michael M ; Bresson, Xavier ; Vandergheynst, Pierre</creatorcontrib><description>In this paper, we consider the problem of finding dense intrinsic correspondence between manifolds using the recently introduced functional framework. We pose the functional correspondence problem as matrix completion with manifold geometric structure and inducing functional localization with the \(L_1\) norm. We discuss efficient numerical procedures for the solution of our problem. Our method compares favorably to the accuracy of state-of-the-art correspondence algorithms on non-rigid shape matching benchmarks, and is especially advantageous in settings when only scarce data is available.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms</subject><ispartof>arXiv.org, 2014-12</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Kovnatsky, Artiom</creatorcontrib><creatorcontrib>Bronstein, Michael M</creatorcontrib><creatorcontrib>Bresson, Xavier</creatorcontrib><creatorcontrib>Vandergheynst, Pierre</creatorcontrib><title>Functional correspondence by matrix completion</title><title>arXiv.org</title><description>In this paper, we consider the problem of finding dense intrinsic correspondence between manifolds using the recently introduced functional framework. We pose the functional correspondence problem as matrix completion with manifold geometric structure and inducing functional localization with the \(L_1\) norm. We discuss efficient numerical procedures for the solution of our problem. Our method compares favorably to the accuracy of state-of-the-art correspondence algorithms on non-rigid shape matching benchmarks, and is especially advantageous in settings when only scarce data is available.</description><subject>Algorithms</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQcyvNSy7JzM9LzFFIzi8qSi0uyM9LSc1LTlVIqlTITSwpyqwASuQW5KSCVPEwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSIqBhxfFGBhamBsbmhqYmxsSpAgBNoTMQ</recordid><startdate>20141227</startdate><enddate>20141227</enddate><creator>Kovnatsky, Artiom</creator><creator>Bronstein, Michael M</creator><creator>Bresson, Xavier</creator><creator>Vandergheynst, Pierre</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20141227</creationdate><title>Functional correspondence by matrix completion</title><author>Kovnatsky, Artiom ; Bronstein, Michael M ; Bresson, Xavier ; Vandergheynst, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20850371543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Kovnatsky, Artiom</creatorcontrib><creatorcontrib>Bronstein, Michael M</creatorcontrib><creatorcontrib>Bresson, Xavier</creatorcontrib><creatorcontrib>Vandergheynst, Pierre</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kovnatsky, Artiom</au><au>Bronstein, Michael M</au><au>Bresson, Xavier</au><au>Vandergheynst, Pierre</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Functional correspondence by matrix completion</atitle><jtitle>arXiv.org</jtitle><date>2014-12-27</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>In this paper, we consider the problem of finding dense intrinsic correspondence between manifolds using the recently introduced functional framework. We pose the functional correspondence problem as matrix completion with manifold geometric structure and inducing functional localization with the \(L_1\) norm. We discuss efficient numerical procedures for the solution of our problem. Our method compares favorably to the accuracy of state-of-the-art correspondence algorithms on non-rigid shape matching benchmarks, and is especially advantageous in settings when only scarce data is available.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2014-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2085037154
source Free E- Journals
subjects Algorithms
title Functional correspondence by matrix completion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A09%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Functional%20correspondence%20by%20matrix%20completion&rft.jtitle=arXiv.org&rft.au=Kovnatsky,%20Artiom&rft.date=2014-12-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2085037154%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085037154&rft_id=info:pmid/&rfr_iscdi=true