Speckle Reduction in Polarimetric SAR Imagery with Stochastic Distances and Nonlocal Means
This paper presents a technique for reducing speckle in Polarimetric Synthetic Aperture Radar (PolSAR) imagery using Nonlocal Means and a statistical test based on stochastic divergences. The main objective is to select homogeneous pixels in the filtering area through statistical tests between distr...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2013-04 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Torres, Leonardo Sant'Anna, Sidnei J S Freitas, Corina C Frery, Alejandro C |
description | This paper presents a technique for reducing speckle in Polarimetric Synthetic Aperture Radar (PolSAR) imagery using Nonlocal Means and a statistical test based on stochastic divergences. The main objective is to select homogeneous pixels in the filtering area through statistical tests between distributions. This proposal uses the complex Wishart model to describe PolSAR data, but the technique can be extended to other models. The weights of the location-variant linear filter are function of the p-values of tests which verify the hypothesis that two samples come from the same distribution and, therefore, can be used to compute a local mean. The test stems from the family of (h-phi) divergences which originated in Information Theory. This novel technique was compared with the Boxcar, Refined Lee and IDAN filters. Image quality assessment methods on simulated and real data are employed to validate the performance of this approach. We show that the proposed filter also enhances the polarimetric entropy and preserves the scattering information of the targets. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2084932715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084932715</sourcerecordid><originalsourceid>FETCH-proquest_journals_20849327153</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtO1xwLtSktXUUf9BBkdbJpYT0alPTRJMU8e118AGczvCdAQkoY7MoTygdkdC5No5jOs9omrKAXMoHirtCKLDuhZdGg9RwMopb2aG3UkC5LGDf8RvaN7ykb6D0RjTc-a-tpfNcC3TAdQ1Ho5URXMEBuXYTMrxy5TD8dUym2815tYse1jx7dL5qTW_1lyoa58mC0WyWsv-uD_xTQkc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084932715</pqid></control><display><type>article</type><title>Speckle Reduction in Polarimetric SAR Imagery with Stochastic Distances and Nonlocal Means</title><source>Free E- Journals</source><creator>Torres, Leonardo ; Sant'Anna, Sidnei J S ; Freitas, Corina C ; Frery, Alejandro C</creator><creatorcontrib>Torres, Leonardo ; Sant'Anna, Sidnei J S ; Freitas, Corina C ; Frery, Alejandro C</creatorcontrib><description>This paper presents a technique for reducing speckle in Polarimetric Synthetic Aperture Radar (PolSAR) imagery using Nonlocal Means and a statistical test based on stochastic divergences. The main objective is to select homogeneous pixels in the filtering area through statistical tests between distributions. This proposal uses the complex Wishart model to describe PolSAR data, but the technique can be extended to other models. The weights of the location-variant linear filter are function of the p-values of tests which verify the hypothesis that two samples come from the same distribution and, therefore, can be used to compute a local mean. The test stems from the family of (h-phi) divergences which originated in Information Theory. This novel technique was compared with the Boxcar, Refined Lee and IDAN filters. Image quality assessment methods on simulated and real data are employed to validate the performance of this approach. We show that the proposed filter also enhances the polarimetric entropy and preserves the scattering information of the targets.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computer simulation ; Freight cars ; Image filters ; Image quality ; Information theory ; Linear filters ; Quality assessment ; Radar imaging ; Radar polarimetry ; Statistical methods ; Statistical tests ; Synthetic aperture radar</subject><ispartof>arXiv.org, 2013-04</ispartof><rights>2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Torres, Leonardo</creatorcontrib><creatorcontrib>Sant'Anna, Sidnei J S</creatorcontrib><creatorcontrib>Freitas, Corina C</creatorcontrib><creatorcontrib>Frery, Alejandro C</creatorcontrib><title>Speckle Reduction in Polarimetric SAR Imagery with Stochastic Distances and Nonlocal Means</title><title>arXiv.org</title><description>This paper presents a technique for reducing speckle in Polarimetric Synthetic Aperture Radar (PolSAR) imagery using Nonlocal Means and a statistical test based on stochastic divergences. The main objective is to select homogeneous pixels in the filtering area through statistical tests between distributions. This proposal uses the complex Wishart model to describe PolSAR data, but the technique can be extended to other models. The weights of the location-variant linear filter are function of the p-values of tests which verify the hypothesis that two samples come from the same distribution and, therefore, can be used to compute a local mean. The test stems from the family of (h-phi) divergences which originated in Information Theory. This novel technique was compared with the Boxcar, Refined Lee and IDAN filters. Image quality assessment methods on simulated and real data are employed to validate the performance of this approach. We show that the proposed filter also enhances the polarimetric entropy and preserves the scattering information of the targets.</description><subject>Computer simulation</subject><subject>Freight cars</subject><subject>Image filters</subject><subject>Image quality</subject><subject>Information theory</subject><subject>Linear filters</subject><subject>Quality assessment</subject><subject>Radar imaging</subject><subject>Radar polarimetry</subject><subject>Statistical methods</subject><subject>Statistical tests</subject><subject>Synthetic aperture radar</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtO1xwLtSktXUUf9BBkdbJpYT0alPTRJMU8e118AGczvCdAQkoY7MoTygdkdC5No5jOs9omrKAXMoHirtCKLDuhZdGg9RwMopb2aG3UkC5LGDf8RvaN7ykb6D0RjTc-a-tpfNcC3TAdQ1Ho5URXMEBuXYTMrxy5TD8dUym2815tYse1jx7dL5qTW_1lyoa58mC0WyWsv-uD_xTQkc</recordid><startdate>20130416</startdate><enddate>20130416</enddate><creator>Torres, Leonardo</creator><creator>Sant'Anna, Sidnei J S</creator><creator>Freitas, Corina C</creator><creator>Frery, Alejandro C</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130416</creationdate><title>Speckle Reduction in Polarimetric SAR Imagery with Stochastic Distances and Nonlocal Means</title><author>Torres, Leonardo ; Sant'Anna, Sidnei J S ; Freitas, Corina C ; Frery, Alejandro C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20849327153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computer simulation</topic><topic>Freight cars</topic><topic>Image filters</topic><topic>Image quality</topic><topic>Information theory</topic><topic>Linear filters</topic><topic>Quality assessment</topic><topic>Radar imaging</topic><topic>Radar polarimetry</topic><topic>Statistical methods</topic><topic>Statistical tests</topic><topic>Synthetic aperture radar</topic><toplevel>online_resources</toplevel><creatorcontrib>Torres, Leonardo</creatorcontrib><creatorcontrib>Sant'Anna, Sidnei J S</creatorcontrib><creatorcontrib>Freitas, Corina C</creatorcontrib><creatorcontrib>Frery, Alejandro C</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Torres, Leonardo</au><au>Sant'Anna, Sidnei J S</au><au>Freitas, Corina C</au><au>Frery, Alejandro C</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Speckle Reduction in Polarimetric SAR Imagery with Stochastic Distances and Nonlocal Means</atitle><jtitle>arXiv.org</jtitle><date>2013-04-16</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>This paper presents a technique for reducing speckle in Polarimetric Synthetic Aperture Radar (PolSAR) imagery using Nonlocal Means and a statistical test based on stochastic divergences. The main objective is to select homogeneous pixels in the filtering area through statistical tests between distributions. This proposal uses the complex Wishart model to describe PolSAR data, but the technique can be extended to other models. The weights of the location-variant linear filter are function of the p-values of tests which verify the hypothesis that two samples come from the same distribution and, therefore, can be used to compute a local mean. The test stems from the family of (h-phi) divergences which originated in Information Theory. This novel technique was compared with the Boxcar, Refined Lee and IDAN filters. Image quality assessment methods on simulated and real data are employed to validate the performance of this approach. We show that the proposed filter also enhances the polarimetric entropy and preserves the scattering information of the targets.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2013-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2084932715 |
source | Free E- Journals |
subjects | Computer simulation Freight cars Image filters Image quality Information theory Linear filters Quality assessment Radar imaging Radar polarimetry Statistical methods Statistical tests Synthetic aperture radar |
title | Speckle Reduction in Polarimetric SAR Imagery with Stochastic Distances and Nonlocal Means |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A44%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Speckle%20Reduction%20in%20Polarimetric%20SAR%20Imagery%20with%20Stochastic%20Distances%20and%20Nonlocal%20Means&rft.jtitle=arXiv.org&rft.au=Torres,%20Leonardo&rft.date=2013-04-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2084932715%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084932715&rft_id=info:pmid/&rfr_iscdi=true |