Recognizable Series on Hypergraphs

We introduce the notion of Hypergraph Weighted Model (HWM) that generically associates a tensor network to a hypergraph and then computes a value by tensor contractions directed by its hyperedges. A series r defined on a hypergraph family is said to be recognizable if there exists a HWM that compute...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2014-10
Hauptverfasser: Bailly, Raphaël, Denis, François, Rabusseau, Guillaume
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bailly, Raphaël
Denis, François
Rabusseau, Guillaume
description We introduce the notion of Hypergraph Weighted Model (HWM) that generically associates a tensor network to a hypergraph and then computes a value by tensor contractions directed by its hyperedges. A series r defined on a hypergraph family is said to be recognizable if there exists a HWM that computes it. This model generalizes the notion of rational series on strings and trees. We prove some properties of the model and study at which conditions finite support series are recognizable.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2084848488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084848488</sourcerecordid><originalsourceid>FETCH-proquest_journals_20848484883</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQCkpNzk_Py6xKTMpJVQhOLcpMLVbIz1PwqCxILUovSizIKOZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjAwsTMLQwJk4VAHPTLh0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084848488</pqid></control><display><type>article</type><title>Recognizable Series on Hypergraphs</title><source>Free E- Journals</source><creator>Bailly, Raphaël ; Denis, François ; Rabusseau, Guillaume</creator><creatorcontrib>Bailly, Raphaël ; Denis, François ; Rabusseau, Guillaume</creatorcontrib><description>We introduce the notion of Hypergraph Weighted Model (HWM) that generically associates a tensor network to a hypergraph and then computes a value by tensor contractions directed by its hyperedges. A series r defined on a hypergraph family is said to be recognizable if there exists a HWM that computes it. This model generalizes the notion of rational series on strings and trees. We prove some properties of the model and study at which conditions finite support series are recognizable.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Graph theory ; Graphs ; Mathematical analysis ; Series (mathematics) ; Strings ; Tensors</subject><ispartof>arXiv.org, 2014-10</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Bailly, Raphaël</creatorcontrib><creatorcontrib>Denis, François</creatorcontrib><creatorcontrib>Rabusseau, Guillaume</creatorcontrib><title>Recognizable Series on Hypergraphs</title><title>arXiv.org</title><description>We introduce the notion of Hypergraph Weighted Model (HWM) that generically associates a tensor network to a hypergraph and then computes a value by tensor contractions directed by its hyperedges. A series r defined on a hypergraph family is said to be recognizable if there exists a HWM that computes it. This model generalizes the notion of rational series on strings and trees. We prove some properties of the model and study at which conditions finite support series are recognizable.</description><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematical analysis</subject><subject>Series (mathematics)</subject><subject>Strings</subject><subject>Tensors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQCkpNzk_Py6xKTMpJVQhOLcpMLVbIz1PwqCxILUovSizIKOZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjAwsTMLQwJk4VAHPTLh0</recordid><startdate>20141016</startdate><enddate>20141016</enddate><creator>Bailly, Raphaël</creator><creator>Denis, François</creator><creator>Rabusseau, Guillaume</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20141016</creationdate><title>Recognizable Series on Hypergraphs</title><author>Bailly, Raphaël ; Denis, François ; Rabusseau, Guillaume</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20848484883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematical analysis</topic><topic>Series (mathematics)</topic><topic>Strings</topic><topic>Tensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Bailly, Raphaël</creatorcontrib><creatorcontrib>Denis, François</creatorcontrib><creatorcontrib>Rabusseau, Guillaume</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bailly, Raphaël</au><au>Denis, François</au><au>Rabusseau, Guillaume</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Recognizable Series on Hypergraphs</atitle><jtitle>arXiv.org</jtitle><date>2014-10-16</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>We introduce the notion of Hypergraph Weighted Model (HWM) that generically associates a tensor network to a hypergraph and then computes a value by tensor contractions directed by its hyperedges. A series r defined on a hypergraph family is said to be recognizable if there exists a HWM that computes it. This model generalizes the notion of rational series on strings and trees. We prove some properties of the model and study at which conditions finite support series are recognizable.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2014-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2084848488
source Free E- Journals
subjects Graph theory
Graphs
Mathematical analysis
Series (mathematics)
Strings
Tensors
title Recognizable Series on Hypergraphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A55%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Recognizable%20Series%20on%20Hypergraphs&rft.jtitle=arXiv.org&rft.au=Bailly,%20Rapha%C3%ABl&rft.date=2014-10-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2084848488%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084848488&rft_id=info:pmid/&rfr_iscdi=true