Constructions of A Large Class of Optimum Constant Weight Codes over F_2
A new method of constructing optimum constant weight codes over F_2 based on a generalized \((u, u+v)\) construction is presented. We present a new method of constructing superimposed code \(C_{(s_1,s_2,\cdots,s_I)}^{(h_1, h_2, \cdots, h_I)}\) bound. and presented a large class of optimum constant w...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2014-06 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kasahara, Masao Hirasawa, Shigeichi |
description | A new method of constructing optimum constant weight codes over F_2 based on a generalized \((u, u+v)\) construction is presented. We present a new method of constructing superimposed code \(C_{(s_1,s_2,\cdots,s_I)}^{(h_1, h_2, \cdots, h_I)}\) bound. and presented a large class of optimum constant weight codes over F_2 that meet the bound due to Brouwer and Verhoeff, which will be referred to as BV . We present large classes of optimum constant weight codes over F_2 for \(k=2\) and \(k=3\) for \(n \leqq 128\). We also present optimum constant weight codes over F_2 that meet the BV bound for \(k=2,3,4,5\) and 6, for \(n \leqq 128\). The authors would like to present the following conjectures : \(C_{I}\): \(C_{(s_1)}^{(h_1)}\) presented in this paper yields the optimum constant weight codes for the code-length \(n=3h_1\), number of information symbols \(k=2\) and minimum distance \(d=2h_1\) for any positive integer \(h_1\). \(C_{II}\): \(C_{(s_1)}^{(h_1)}\) yields the optimum constant weight codes at \(n=7h_1, k=3\) and \(d=4h_1\) for any \(h_1\). \(C_{III}\): Code \(C_{(s_1,s_2,\cdots,s_I)}^{(h_1, h_2, \cdots, h_I)}\) yields the optimum constant weight codes of length \(n=2^{k+1}-2\), and minimum distance \(d=2^{k}\) for any number of information symbols \(k\geq 3\). |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2084776882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084776882</sourcerecordid><originalsourceid>FETCH-proquest_journals_20847768823</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTwcM7PKy4pKk0uyQQyFPLTFBwVfBKL0lMVnHMSi8EC_gUlmbmluQpglYl5JQrhqZnpGSVAfkoqUEFZapGCW7wRDwNrWmJOcSovlOZmUHZzDXH20C0oyi8sTS0uic_KLy3KA0rFGxlYmJibm1lYGBkTpwoAySo6_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084776882</pqid></control><display><type>article</type><title>Constructions of A Large Class of Optimum Constant Weight Codes over F_2</title><source>Free E- Journals</source><creator>Kasahara, Masao ; Hirasawa, Shigeichi</creator><creatorcontrib>Kasahara, Masao ; Hirasawa, Shigeichi</creatorcontrib><description>A new method of constructing optimum constant weight codes over F_2 based on a generalized \((u, u+v)\) construction is presented. We present a new method of constructing superimposed code \(C_{(s_1,s_2,\cdots,s_I)}^{(h_1, h_2, \cdots, h_I)}\) bound. and presented a large class of optimum constant weight codes over F_2 that meet the bound due to Brouwer and Verhoeff, which will be referred to as BV . We present large classes of optimum constant weight codes over F_2 for \(k=2\) and \(k=3\) for \(n \leqq 128\). We also present optimum constant weight codes over F_2 that meet the BV bound for \(k=2,3,4,5\) and 6, for \(n \leqq 128\). The authors would like to present the following conjectures : \(C_{I}\): \(C_{(s_1)}^{(h_1)}\) presented in this paper yields the optimum constant weight codes for the code-length \(n=3h_1\), number of information symbols \(k=2\) and minimum distance \(d=2h_1\) for any positive integer \(h_1\). \(C_{II}\): \(C_{(s_1)}^{(h_1)}\) yields the optimum constant weight codes at \(n=7h_1, k=3\) and \(d=4h_1\) for any \(h_1\). \(C_{III}\): Code \(C_{(s_1,s_2,\cdots,s_I)}^{(h_1, h_2, \cdots, h_I)}\) yields the optimum constant weight codes of length \(n=2^{k+1}-2\), and minimum distance \(d=2^{k}\) for any number of information symbols \(k\geq 3\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Codes ; Symbols ; Weight</subject><ispartof>arXiv.org, 2014-06</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Kasahara, Masao</creatorcontrib><creatorcontrib>Hirasawa, Shigeichi</creatorcontrib><title>Constructions of A Large Class of Optimum Constant Weight Codes over F_2</title><title>arXiv.org</title><description>A new method of constructing optimum constant weight codes over F_2 based on a generalized \((u, u+v)\) construction is presented. We present a new method of constructing superimposed code \(C_{(s_1,s_2,\cdots,s_I)}^{(h_1, h_2, \cdots, h_I)}\) bound. and presented a large class of optimum constant weight codes over F_2 that meet the bound due to Brouwer and Verhoeff, which will be referred to as BV . We present large classes of optimum constant weight codes over F_2 for \(k=2\) and \(k=3\) for \(n \leqq 128\). We also present optimum constant weight codes over F_2 that meet the BV bound for \(k=2,3,4,5\) and 6, for \(n \leqq 128\). The authors would like to present the following conjectures : \(C_{I}\): \(C_{(s_1)}^{(h_1)}\) presented in this paper yields the optimum constant weight codes for the code-length \(n=3h_1\), number of information symbols \(k=2\) and minimum distance \(d=2h_1\) for any positive integer \(h_1\). \(C_{II}\): \(C_{(s_1)}^{(h_1)}\) yields the optimum constant weight codes at \(n=7h_1, k=3\) and \(d=4h_1\) for any \(h_1\). \(C_{III}\): Code \(C_{(s_1,s_2,\cdots,s_I)}^{(h_1, h_2, \cdots, h_I)}\) yields the optimum constant weight codes of length \(n=2^{k+1}-2\), and minimum distance \(d=2^{k}\) for any number of information symbols \(k\geq 3\).</description><subject>Codes</subject><subject>Symbols</subject><subject>Weight</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTwcM7PKy4pKk0uyQQyFPLTFBwVfBKL0lMVnHMSi8EC_gUlmbmluQpglYl5JQrhqZnpGSVAfkoqUEFZapGCW7wRDwNrWmJOcSovlOZmUHZzDXH20C0oyi8sTS0uic_KLy3KA0rFGxlYmJibm1lYGBkTpwoAySo6_Q</recordid><startdate>20140623</startdate><enddate>20140623</enddate><creator>Kasahara, Masao</creator><creator>Hirasawa, Shigeichi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140623</creationdate><title>Constructions of A Large Class of Optimum Constant Weight Codes over F_2</title><author>Kasahara, Masao ; Hirasawa, Shigeichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20847768823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Codes</topic><topic>Symbols</topic><topic>Weight</topic><toplevel>online_resources</toplevel><creatorcontrib>Kasahara, Masao</creatorcontrib><creatorcontrib>Hirasawa, Shigeichi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kasahara, Masao</au><au>Hirasawa, Shigeichi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Constructions of A Large Class of Optimum Constant Weight Codes over F_2</atitle><jtitle>arXiv.org</jtitle><date>2014-06-23</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>A new method of constructing optimum constant weight codes over F_2 based on a generalized \((u, u+v)\) construction is presented. We present a new method of constructing superimposed code \(C_{(s_1,s_2,\cdots,s_I)}^{(h_1, h_2, \cdots, h_I)}\) bound. and presented a large class of optimum constant weight codes over F_2 that meet the bound due to Brouwer and Verhoeff, which will be referred to as BV . We present large classes of optimum constant weight codes over F_2 for \(k=2\) and \(k=3\) for \(n \leqq 128\). We also present optimum constant weight codes over F_2 that meet the BV bound for \(k=2,3,4,5\) and 6, for \(n \leqq 128\). The authors would like to present the following conjectures : \(C_{I}\): \(C_{(s_1)}^{(h_1)}\) presented in this paper yields the optimum constant weight codes for the code-length \(n=3h_1\), number of information symbols \(k=2\) and minimum distance \(d=2h_1\) for any positive integer \(h_1\). \(C_{II}\): \(C_{(s_1)}^{(h_1)}\) yields the optimum constant weight codes at \(n=7h_1, k=3\) and \(d=4h_1\) for any \(h_1\). \(C_{III}\): Code \(C_{(s_1,s_2,\cdots,s_I)}^{(h_1, h_2, \cdots, h_I)}\) yields the optimum constant weight codes of length \(n=2^{k+1}-2\), and minimum distance \(d=2^{k}\) for any number of information symbols \(k\geq 3\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2014-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2084776882 |
source | Free E- Journals |
subjects | Codes Symbols Weight |
title | Constructions of A Large Class of Optimum Constant Weight Codes over F_2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A41%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Constructions%20of%20A%20Large%20Class%20of%20Optimum%20Constant%20Weight%20Codes%20over%20F_2&rft.jtitle=arXiv.org&rft.au=Kasahara,%20Masao&rft.date=2014-06-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2084776882%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084776882&rft_id=info:pmid/&rfr_iscdi=true |