Some classification results for generalized q-gaussian algebras

To any trace preserving action \(\sigma: G \curvearrowright A\) of a countable discrete group on a finite von Neumann algebra \(A\) and any orthogonal representation \(\pi:G \to \mathcal O(\ell^2_{\mathbb{R}}(G))\), we associate the generalized q-gaussian von Neumann algebra \(A \rtimes_{\sigma} \Ga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2014-11
Hauptverfasser: Junge, Marius, Longfield, Stephen, Udrea, Bogdan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Junge, Marius
Longfield, Stephen
Udrea, Bogdan
description To any trace preserving action \(\sigma: G \curvearrowright A\) of a countable discrete group on a finite von Neumann algebra \(A\) and any orthogonal representation \(\pi:G \to \mathcal O(\ell^2_{\mathbb{R}}(G))\), we associate the generalized q-gaussian von Neumann algebra \(A \rtimes_{\sigma} \Gamma_q^{\pi}(G,K)\), where \(K\) is an infinite dimensional separable Hilbert space. Specializing to the cases of \(\pi\) being trivial or given by conjugation, we then prove that if \(G \curvearrowright A = L^{\infty}(X)\), \(G' \curvearrowright B = L^{\infty}(Y)\) are p.m.p. free ergodic rigid actions, the commutator subgroups \([G,G]\), \([G',G']\) are ICC, and \(G, G'\) belong to a fairly large class of groups (including all non-amenable groups having the Haagerup property), then \(A \rtimes \Gamma_q(G,K) = B \rtimes \Gamma_q(G',K')\) implies that \(\mathcal R(G \curvearrowright A)\) is stably isomorphic to \(\mathcal R(G' \curvearrowright B)\), where \(\mathcal R(G \curvearrowright A), \mathcal R(G' \curvearrowright B)\) are the countable, p.m.p. equivalence relations implemented by the actions of \(G\) and \(G'\) on \(A\) and \(B\), respectively. Using results of D. Gaboriau and S. Popa we construct continuously many pair-wise non-isomorphic von Neumann algebras of the form \(L^{\infty}(X) \rtimes \Gamma_q(\mathbb{F}_n,K)\), for suitable free ergodic rigid p.m.p. actions \(\mathbb{F}_n \curvearrowright X\).
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2084768795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084768795</sourcerecordid><originalsourceid>FETCH-proquest_journals_20847687953</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtOwScAzHpT5wcRHHXvVzb25ISE5vbLD69HXwApzOcb8UypfVBmEKpDcuJRimlqmpVljpjp3t4IW8dENnetjDb4HlESm4m3ofIB_QYwdkPdnwSA6QFgufgBnxGoB1b9-AI81-3bH-9PM438Y5hSkhzM4YU_bIaJU1RV6Y-lvo_9QVNyzlx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084768795</pqid></control><display><type>article</type><title>Some classification results for generalized q-gaussian algebras</title><source>Free E- Journals</source><creator>Junge, Marius ; Longfield, Stephen ; Udrea, Bogdan</creator><creatorcontrib>Junge, Marius ; Longfield, Stephen ; Udrea, Bogdan</creatorcontrib><description>To any trace preserving action \(\sigma: G \curvearrowright A\) of a countable discrete group on a finite von Neumann algebra \(A\) and any orthogonal representation \(\pi:G \to \mathcal O(\ell^2_{\mathbb{R}}(G))\), we associate the generalized q-gaussian von Neumann algebra \(A \rtimes_{\sigma} \Gamma_q^{\pi}(G,K)\), where \(K\) is an infinite dimensional separable Hilbert space. Specializing to the cases of \(\pi\) being trivial or given by conjugation, we then prove that if \(G \curvearrowright A = L^{\infty}(X)\), \(G' \curvearrowright B = L^{\infty}(Y)\) are p.m.p. free ergodic rigid actions, the commutator subgroups \([G,G]\), \([G',G']\) are ICC, and \(G, G'\) belong to a fairly large class of groups (including all non-amenable groups having the Haagerup property), then \(A \rtimes \Gamma_q(G,K) = B \rtimes \Gamma_q(G',K')\) implies that \(\mathcal R(G \curvearrowright A)\) is stably isomorphic to \(\mathcal R(G' \curvearrowright B)\), where \(\mathcal R(G \curvearrowright A), \mathcal R(G' \curvearrowright B)\) are the countable, p.m.p. equivalence relations implemented by the actions of \(G\) and \(G'\) on \(A\) and \(B\), respectively. Using results of D. Gaboriau and S. Popa we construct continuously many pair-wise non-isomorphic von Neumann algebras of the form \(L^{\infty}(X) \rtimes \Gamma_q(\mathbb{F}_n,K)\), for suitable free ergodic rigid p.m.p. actions \(\mathbb{F}_n \curvearrowright X\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Commutators ; Conjugation ; Economic models ; Ergodic processes ; Expected utility ; Hilbert space ; Subgroups</subject><ispartof>arXiv.org, 2014-11</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Junge, Marius</creatorcontrib><creatorcontrib>Longfield, Stephen</creatorcontrib><creatorcontrib>Udrea, Bogdan</creatorcontrib><title>Some classification results for generalized q-gaussian algebras</title><title>arXiv.org</title><description>To any trace preserving action \(\sigma: G \curvearrowright A\) of a countable discrete group on a finite von Neumann algebra \(A\) and any orthogonal representation \(\pi:G \to \mathcal O(\ell^2_{\mathbb{R}}(G))\), we associate the generalized q-gaussian von Neumann algebra \(A \rtimes_{\sigma} \Gamma_q^{\pi}(G,K)\), where \(K\) is an infinite dimensional separable Hilbert space. Specializing to the cases of \(\pi\) being trivial or given by conjugation, we then prove that if \(G \curvearrowright A = L^{\infty}(X)\), \(G' \curvearrowright B = L^{\infty}(Y)\) are p.m.p. free ergodic rigid actions, the commutator subgroups \([G,G]\), \([G',G']\) are ICC, and \(G, G'\) belong to a fairly large class of groups (including all non-amenable groups having the Haagerup property), then \(A \rtimes \Gamma_q(G,K) = B \rtimes \Gamma_q(G',K')\) implies that \(\mathcal R(G \curvearrowright A)\) is stably isomorphic to \(\mathcal R(G' \curvearrowright B)\), where \(\mathcal R(G \curvearrowright A), \mathcal R(G' \curvearrowright B)\) are the countable, p.m.p. equivalence relations implemented by the actions of \(G\) and \(G'\) on \(A\) and \(B\), respectively. Using results of D. Gaboriau and S. Popa we construct continuously many pair-wise non-isomorphic von Neumann algebras of the form \(L^{\infty}(X) \rtimes \Gamma_q(\mathbb{F}_n,K)\), for suitable free ergodic rigid p.m.p. actions \(\mathbb{F}_n \curvearrowright X\).</description><subject>Algebra</subject><subject>Commutators</subject><subject>Conjugation</subject><subject>Economic models</subject><subject>Ergodic processes</subject><subject>Expected utility</subject><subject>Hilbert space</subject><subject>Subgroups</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtOwScAzHpT5wcRHHXvVzb25ISE5vbLD69HXwApzOcb8UypfVBmEKpDcuJRimlqmpVljpjp3t4IW8dENnetjDb4HlESm4m3ofIB_QYwdkPdnwSA6QFgufgBnxGoB1b9-AI81-3bH-9PM438Y5hSkhzM4YU_bIaJU1RV6Y-lvo_9QVNyzlx</recordid><startdate>20141107</startdate><enddate>20141107</enddate><creator>Junge, Marius</creator><creator>Longfield, Stephen</creator><creator>Udrea, Bogdan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20141107</creationdate><title>Some classification results for generalized q-gaussian algebras</title><author>Junge, Marius ; Longfield, Stephen ; Udrea, Bogdan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20847687953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algebra</topic><topic>Commutators</topic><topic>Conjugation</topic><topic>Economic models</topic><topic>Ergodic processes</topic><topic>Expected utility</topic><topic>Hilbert space</topic><topic>Subgroups</topic><toplevel>online_resources</toplevel><creatorcontrib>Junge, Marius</creatorcontrib><creatorcontrib>Longfield, Stephen</creatorcontrib><creatorcontrib>Udrea, Bogdan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Junge, Marius</au><au>Longfield, Stephen</au><au>Udrea, Bogdan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Some classification results for generalized q-gaussian algebras</atitle><jtitle>arXiv.org</jtitle><date>2014-11-07</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>To any trace preserving action \(\sigma: G \curvearrowright A\) of a countable discrete group on a finite von Neumann algebra \(A\) and any orthogonal representation \(\pi:G \to \mathcal O(\ell^2_{\mathbb{R}}(G))\), we associate the generalized q-gaussian von Neumann algebra \(A \rtimes_{\sigma} \Gamma_q^{\pi}(G,K)\), where \(K\) is an infinite dimensional separable Hilbert space. Specializing to the cases of \(\pi\) being trivial or given by conjugation, we then prove that if \(G \curvearrowright A = L^{\infty}(X)\), \(G' \curvearrowright B = L^{\infty}(Y)\) are p.m.p. free ergodic rigid actions, the commutator subgroups \([G,G]\), \([G',G']\) are ICC, and \(G, G'\) belong to a fairly large class of groups (including all non-amenable groups having the Haagerup property), then \(A \rtimes \Gamma_q(G,K) = B \rtimes \Gamma_q(G',K')\) implies that \(\mathcal R(G \curvearrowright A)\) is stably isomorphic to \(\mathcal R(G' \curvearrowright B)\), where \(\mathcal R(G \curvearrowright A), \mathcal R(G' \curvearrowright B)\) are the countable, p.m.p. equivalence relations implemented by the actions of \(G\) and \(G'\) on \(A\) and \(B\), respectively. Using results of D. Gaboriau and S. Popa we construct continuously many pair-wise non-isomorphic von Neumann algebras of the form \(L^{\infty}(X) \rtimes \Gamma_q(\mathbb{F}_n,K)\), for suitable free ergodic rigid p.m.p. actions \(\mathbb{F}_n \curvearrowright X\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2014-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2084768795
source Free E- Journals
subjects Algebra
Commutators
Conjugation
Economic models
Ergodic processes
Expected utility
Hilbert space
Subgroups
title Some classification results for generalized q-gaussian algebras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A02%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Some%20classification%20results%20for%20generalized%20q-gaussian%20algebras&rft.jtitle=arXiv.org&rft.au=Junge,%20Marius&rft.date=2014-11-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2084768795%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084768795&rft_id=info:pmid/&rfr_iscdi=true