Kostant--Kumar polynomials and tangent cones to Schubert varieties for involutions in \(A_n\), \(F_4\) and \(G_2\)

Let \(G\) be a reductive complex algebraic group, \(T\) a maximal torus of \(G\), \(B\) a Borel subgroup of \(G\) containing \(T\), \(\Phi\) the root system of \(G\) w.r.t. \(T\), \(W\) the Weyl group of \(\Phi\). Denote by \(\Fo = G/B\) the flag variety, by \(X_w\) the Schubert subvariety of \(\Fo\...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2012-10
Hauptverfasser: Ignatyev, Mikhail V, Eliseev, Dmitriy Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ignatyev, Mikhail V
Eliseev, Dmitriy Y
description Let \(G\) be a reductive complex algebraic group, \(T\) a maximal torus of \(G\), \(B\) a Borel subgroup of \(G\) containing \(T\), \(\Phi\) the root system of \(G\) w.r.t. \(T\), \(W\) the Weyl group of \(\Phi\). Denote by \(\Fo = G/B\) the flag variety, by \(X_w\) the Schubert subvariety of \(\Fo\) associated with an element \(w\in W\), and by \(C_w\) the tangent cone to \(X_w\) at the point \(p = eB\). Then \(C_w\) is a subscheme of the tangent space \(T_pX_w\subseteq T_p\Fo\). Suppose \(w\), \(w'\) are distinct involutions in \(W\). Using the so-called Kostant--Kumar polynomials, we show that if every irreducible component of \(\Phi\) is of type \(A_n\), \(F_4\) or \(G_2\), then \(C_w\) and \(C_{w'}\) do not coincide.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2084750945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084750945</sourcerecordid><originalsourceid>FETCH-proquest_journals_20847509453</originalsourceid><addsrcrecordid>eNqNjMkKAjEQRIMgKOo_NHhxwIGYmXE5iriARz0GQtSokbFbswj-vUH8AE_1qFdUg7VFUYzyaSlEi_W8v3HOxXgiqqpoM7clHzSGPN_Gu3bwoPqNdLe69qDxBMldDAY4EhoPgWB3vMaDcQFe2lkTbGrP5MDii-oYLKFPDHIwVyizYYKVKmX2_ZKDtRIy67LmOd2b3i87rL9a7heb_OHoGY0P6kbRYVJK8Gk5qfisrIr_Vh-rg0lQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084750945</pqid></control><display><type>article</type><title>Kostant--Kumar polynomials and tangent cones to Schubert varieties for involutions in \(A_n\), \(F_4\) and \(G_2\)</title><source>Free E- Journals</source><creator>Ignatyev, Mikhail V ; Eliseev, Dmitriy Y</creator><creatorcontrib>Ignatyev, Mikhail V ; Eliseev, Dmitriy Y</creatorcontrib><description>Let \(G\) be a reductive complex algebraic group, \(T\) a maximal torus of \(G\), \(B\) a Borel subgroup of \(G\) containing \(T\), \(\Phi\) the root system of \(G\) w.r.t. \(T\), \(W\) the Weyl group of \(\Phi\). Denote by \(\Fo = G/B\) the flag variety, by \(X_w\) the Schubert subvariety of \(\Fo\) associated with an element \(w\in W\), and by \(C_w\) the tangent cone to \(X_w\) at the point \(p = eB\). Then \(C_w\) is a subscheme of the tangent space \(T_pX_w\subseteq T_p\Fo\). Suppose \(w\), \(w'\) are distinct involutions in \(W\). Using the so-called Kostant--Kumar polynomials, we show that if every irreducible component of \(\Phi\) is of type \(A_n\), \(F_4\) or \(G_2\), then \(C_w\) and \(C_{w'}\) do not coincide.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cones ; Polynomials ; Subgroups ; Toruses</subject><ispartof>arXiv.org, 2012-10</ispartof><rights>2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Ignatyev, Mikhail V</creatorcontrib><creatorcontrib>Eliseev, Dmitriy Y</creatorcontrib><title>Kostant--Kumar polynomials and tangent cones to Schubert varieties for involutions in \(A_n\), \(F_4\) and \(G_2\)</title><title>arXiv.org</title><description>Let \(G\) be a reductive complex algebraic group, \(T\) a maximal torus of \(G\), \(B\) a Borel subgroup of \(G\) containing \(T\), \(\Phi\) the root system of \(G\) w.r.t. \(T\), \(W\) the Weyl group of \(\Phi\). Denote by \(\Fo = G/B\) the flag variety, by \(X_w\) the Schubert subvariety of \(\Fo\) associated with an element \(w\in W\), and by \(C_w\) the tangent cone to \(X_w\) at the point \(p = eB\). Then \(C_w\) is a subscheme of the tangent space \(T_pX_w\subseteq T_p\Fo\). Suppose \(w\), \(w'\) are distinct involutions in \(W\). Using the so-called Kostant--Kumar polynomials, we show that if every irreducible component of \(\Phi\) is of type \(A_n\), \(F_4\) or \(G_2\), then \(C_w\) and \(C_{w'}\) do not coincide.</description><subject>Cones</subject><subject>Polynomials</subject><subject>Subgroups</subject><subject>Toruses</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMkKAjEQRIMgKOo_NHhxwIGYmXE5iriARz0GQtSokbFbswj-vUH8AE_1qFdUg7VFUYzyaSlEi_W8v3HOxXgiqqpoM7clHzSGPN_Gu3bwoPqNdLe69qDxBMldDAY4EhoPgWB3vMaDcQFe2lkTbGrP5MDii-oYLKFPDHIwVyizYYKVKmX2_ZKDtRIy67LmOd2b3i87rL9a7heb_OHoGY0P6kbRYVJK8Gk5qfisrIr_Vh-rg0lQ</recordid><startdate>20121021</startdate><enddate>20121021</enddate><creator>Ignatyev, Mikhail V</creator><creator>Eliseev, Dmitriy Y</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20121021</creationdate><title>Kostant--Kumar polynomials and tangent cones to Schubert varieties for involutions in \(A_n\), \(F_4\) and \(G_2\)</title><author>Ignatyev, Mikhail V ; Eliseev, Dmitriy Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20847509453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cones</topic><topic>Polynomials</topic><topic>Subgroups</topic><topic>Toruses</topic><toplevel>online_resources</toplevel><creatorcontrib>Ignatyev, Mikhail V</creatorcontrib><creatorcontrib>Eliseev, Dmitriy Y</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ignatyev, Mikhail V</au><au>Eliseev, Dmitriy Y</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Kostant--Kumar polynomials and tangent cones to Schubert varieties for involutions in \(A_n\), \(F_4\) and \(G_2\)</atitle><jtitle>arXiv.org</jtitle><date>2012-10-21</date><risdate>2012</risdate><eissn>2331-8422</eissn><abstract>Let \(G\) be a reductive complex algebraic group, \(T\) a maximal torus of \(G\), \(B\) a Borel subgroup of \(G\) containing \(T\), \(\Phi\) the root system of \(G\) w.r.t. \(T\), \(W\) the Weyl group of \(\Phi\). Denote by \(\Fo = G/B\) the flag variety, by \(X_w\) the Schubert subvariety of \(\Fo\) associated with an element \(w\in W\), and by \(C_w\) the tangent cone to \(X_w\) at the point \(p = eB\). Then \(C_w\) is a subscheme of the tangent space \(T_pX_w\subseteq T_p\Fo\). Suppose \(w\), \(w'\) are distinct involutions in \(W\). Using the so-called Kostant--Kumar polynomials, we show that if every irreducible component of \(\Phi\) is of type \(A_n\), \(F_4\) or \(G_2\), then \(C_w\) and \(C_{w'}\) do not coincide.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2012-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2084750945
source Free E- Journals
subjects Cones
Polynomials
Subgroups
Toruses
title Kostant--Kumar polynomials and tangent cones to Schubert varieties for involutions in \(A_n\), \(F_4\) and \(G_2\)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T08%3A08%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Kostant--Kumar%20polynomials%20and%20tangent%20cones%20to%20Schubert%20varieties%20for%20involutions%20in%20%5C(A_n%5C),%20%5C(F_4%5C)%20and%20%5C(G_2%5C)&rft.jtitle=arXiv.org&rft.au=Ignatyev,%20Mikhail%20V&rft.date=2012-10-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2084750945%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084750945&rft_id=info:pmid/&rfr_iscdi=true