Design of synthetic materials for intracellular delivery of RNAs: From siRNA-mediated gene silencing to CRISPR/Cas gene editing
Ribonucleic acids (RNAs) possess great therapeutic potential and can be used to treat a variety of diseases. The unique biophysical properties of RNAs, such as high molecular weight, negative charge, hydrophilicity, low stability, and potential immunogenicity, require chemical modification and devel...
Gespeichert in:
Veröffentlicht in: | Nano research 2018-10, Vol.11 (10), p.5310-5337 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5337 |
---|---|
container_issue | 10 |
container_start_page | 5310 |
container_title | Nano research |
container_volume | 11 |
creator | Miller, Jason B. Siegwart, Daniel J. |
description | Ribonucleic acids (RNAs) possess great therapeutic potential and can be used to treat a variety of diseases. The unique biophysical properties of RNAs, such as high molecular weight, negative charge, hydrophilicity, low stability, and potential immunogenicity, require chemical modification and development of carriers to enable intracellular delivery of RNAs for clinical use. A variety of nanomaterials have been developed for the effective
in vivo
delivery of short/ small RNAs, messenger RNAs, and RNAs required for gene editing technologies including clustered regularly interspaced palindromic repeat (CRISPR)/Cas. This review outlines the challenges of delivering RNA therapeutics, explores the chemical synthesis of RNA modifications and carriers, and describes the efforts to design nanomaterials that can be used for a variety of clinical indications. |
doi_str_mv | 10.1007/s12274-018-2099-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2084663753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084663753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-c882adb8113fb8c771b356d93a7ce9f186e25785c683b51a10ba550a88e4f7953</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRSMEEqXwAewssQ71Iw-HXRUoVKoAFVhbjjMJrhKn2C5SV_w6rgJixWzmdc-MdKPokuBrgnE-c4TSPIkx4THFRREnR9GEFAWPcYjj35rQ5DQ6c26DcUZJwifR1y043Ro0NMjtjX8HrxXqpQerZedQM1ikjbdSQdftOmlRDZ3-BLs_EOvHubtBCzv0yOnQxD3UOrA1asFAmHVglDYt8gMq18uX5_WslG5cBqUPq_PopAmP4OInT6O3xd1r-RCvnu6X5XwVq4RhHyvOqawrTghrKq7ynFQszeqCyVxB0RCeAU1znqqMsyolkuBKpimWnEPS5EXKptHVeHdrh48dOC82w86a8FJQzJMsY3nKgoqMKmUH5yw0Ymt1L-1eECwOPovRZxF8FgefRRIYOjIuaE0L9u_y_9A3hZGAKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084663753</pqid></control><display><type>article</type><title>Design of synthetic materials for intracellular delivery of RNAs: From siRNA-mediated gene silencing to CRISPR/Cas gene editing</title><source>SpringerNature Journals</source><creator>Miller, Jason B. ; Siegwart, Daniel J.</creator><creatorcontrib>Miller, Jason B. ; Siegwart, Daniel J.</creatorcontrib><description>Ribonucleic acids (RNAs) possess great therapeutic potential and can be used to treat a variety of diseases. The unique biophysical properties of RNAs, such as high molecular weight, negative charge, hydrophilicity, low stability, and potential immunogenicity, require chemical modification and development of carriers to enable intracellular delivery of RNAs for clinical use. A variety of nanomaterials have been developed for the effective
in vivo
delivery of short/ small RNAs, messenger RNAs, and RNAs required for gene editing technologies including clustered regularly interspaced palindromic repeat (CRISPR)/Cas. This review outlines the challenges of delivering RNA therapeutics, explores the chemical synthesis of RNA modifications and carriers, and describes the efforts to design nanomaterials that can be used for a variety of clinical indications.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-018-2099-4</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Cellular apoptosis susceptibility protein ; Chemical modification ; Chemical synthesis ; Chemistry and Materials Science ; Condensed Matter Physics ; CRISPR ; Design modifications ; Gene silencing ; Genetic modification ; Genome editing ; Immunogenicity ; Intracellular ; Materials Science ; Molecular weight ; Nanomaterials ; Nanotechnology ; Organic chemistry ; Review Article ; Ribonucleic acid ; RNA ; siRNA ; Transcription</subject><ispartof>Nano research, 2018-10, Vol.11 (10), p.5310-5337</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Nano Research is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-c882adb8113fb8c771b356d93a7ce9f186e25785c683b51a10ba550a88e4f7953</citedby><cites>FETCH-LOGICAL-c430t-c882adb8113fb8c771b356d93a7ce9f186e25785c683b51a10ba550a88e4f7953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-018-2099-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-018-2099-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Miller, Jason B.</creatorcontrib><creatorcontrib>Siegwart, Daniel J.</creatorcontrib><title>Design of synthetic materials for intracellular delivery of RNAs: From siRNA-mediated gene silencing to CRISPR/Cas gene editing</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Ribonucleic acids (RNAs) possess great therapeutic potential and can be used to treat a variety of diseases. The unique biophysical properties of RNAs, such as high molecular weight, negative charge, hydrophilicity, low stability, and potential immunogenicity, require chemical modification and development of carriers to enable intracellular delivery of RNAs for clinical use. A variety of nanomaterials have been developed for the effective
in vivo
delivery of short/ small RNAs, messenger RNAs, and RNAs required for gene editing technologies including clustered regularly interspaced palindromic repeat (CRISPR)/Cas. This review outlines the challenges of delivering RNA therapeutics, explores the chemical synthesis of RNA modifications and carriers, and describes the efforts to design nanomaterials that can be used for a variety of clinical indications.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Cellular apoptosis susceptibility protein</subject><subject>Chemical modification</subject><subject>Chemical synthesis</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>CRISPR</subject><subject>Design modifications</subject><subject>Gene silencing</subject><subject>Genetic modification</subject><subject>Genome editing</subject><subject>Immunogenicity</subject><subject>Intracellular</subject><subject>Materials Science</subject><subject>Molecular weight</subject><subject>Nanomaterials</subject><subject>Nanotechnology</subject><subject>Organic chemistry</subject><subject>Review Article</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>siRNA</subject><subject>Transcription</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMtOwzAQRSMEEqXwAewssQ71Iw-HXRUoVKoAFVhbjjMJrhKn2C5SV_w6rgJixWzmdc-MdKPokuBrgnE-c4TSPIkx4THFRREnR9GEFAWPcYjj35rQ5DQ6c26DcUZJwifR1y043Ro0NMjtjX8HrxXqpQerZedQM1ikjbdSQdftOmlRDZ3-BLs_EOvHubtBCzv0yOnQxD3UOrA1asFAmHVglDYt8gMq18uX5_WslG5cBqUPq_PopAmP4OInT6O3xd1r-RCvnu6X5XwVq4RhHyvOqawrTghrKq7ynFQszeqCyVxB0RCeAU1znqqMsyolkuBKpimWnEPS5EXKptHVeHdrh48dOC82w86a8FJQzJMsY3nKgoqMKmUH5yw0Ymt1L-1eECwOPovRZxF8FgefRRIYOjIuaE0L9u_y_9A3hZGAKA</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Miller, Jason B.</creator><creator>Siegwart, Daniel J.</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20181001</creationdate><title>Design of synthetic materials for intracellular delivery of RNAs: From siRNA-mediated gene silencing to CRISPR/Cas gene editing</title><author>Miller, Jason B. ; Siegwart, Daniel J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-c882adb8113fb8c771b356d93a7ce9f186e25785c683b51a10ba550a88e4f7953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Cellular apoptosis susceptibility protein</topic><topic>Chemical modification</topic><topic>Chemical synthesis</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>CRISPR</topic><topic>Design modifications</topic><topic>Gene silencing</topic><topic>Genetic modification</topic><topic>Genome editing</topic><topic>Immunogenicity</topic><topic>Intracellular</topic><topic>Materials Science</topic><topic>Molecular weight</topic><topic>Nanomaterials</topic><topic>Nanotechnology</topic><topic>Organic chemistry</topic><topic>Review Article</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>siRNA</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miller, Jason B.</creatorcontrib><creatorcontrib>Siegwart, Daniel J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miller, Jason B.</au><au>Siegwart, Daniel J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of synthetic materials for intracellular delivery of RNAs: From siRNA-mediated gene silencing to CRISPR/Cas gene editing</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>11</volume><issue>10</issue><spage>5310</spage><epage>5337</epage><pages>5310-5337</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Ribonucleic acids (RNAs) possess great therapeutic potential and can be used to treat a variety of diseases. The unique biophysical properties of RNAs, such as high molecular weight, negative charge, hydrophilicity, low stability, and potential immunogenicity, require chemical modification and development of carriers to enable intracellular delivery of RNAs for clinical use. A variety of nanomaterials have been developed for the effective
in vivo
delivery of short/ small RNAs, messenger RNAs, and RNAs required for gene editing technologies including clustered regularly interspaced palindromic repeat (CRISPR)/Cas. This review outlines the challenges of delivering RNA therapeutics, explores the chemical synthesis of RNA modifications and carriers, and describes the efforts to design nanomaterials that can be used for a variety of clinical indications.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-018-2099-4</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2018-10, Vol.11 (10), p.5310-5337 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_2084663753 |
source | SpringerNature Journals |
subjects | Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Cellular apoptosis susceptibility protein Chemical modification Chemical synthesis Chemistry and Materials Science Condensed Matter Physics CRISPR Design modifications Gene silencing Genetic modification Genome editing Immunogenicity Intracellular Materials Science Molecular weight Nanomaterials Nanotechnology Organic chemistry Review Article Ribonucleic acid RNA siRNA Transcription |
title | Design of synthetic materials for intracellular delivery of RNAs: From siRNA-mediated gene silencing to CRISPR/Cas gene editing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A53%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20synthetic%20materials%20for%20intracellular%20delivery%20of%20RNAs:%20From%20siRNA-mediated%20gene%20silencing%20to%20CRISPR/Cas%20gene%20editing&rft.jtitle=Nano%20research&rft.au=Miller,%20Jason%20B.&rft.date=2018-10-01&rft.volume=11&rft.issue=10&rft.spage=5310&rft.epage=5337&rft.pages=5310-5337&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-018-2099-4&rft_dat=%3Cproquest_cross%3E2084663753%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084663753&rft_id=info:pmid/&rfr_iscdi=true |